Skip to main content

Bridged Nucleic Acids for Therapeutic Oligonucleotides

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Recent developments in genetic technologies for genomic analysis, diagnostics, and therapeutics have revolutionary effects on medical science. Oligonucleotide (ON) molecules play an essential role in managing cellular genetic disorders because of their sequence-specific inhibitory effect on complementary RNAs. ONs with modified nucleosides exhibit higher enzymatic stability, duplex-forming ability, sequence selectivity, and in vivo pharmacokinetic profiles, which are extremely anticipated for ON therapeutics. We previously reported 2′-O,4′-C-methylene bridged nucleic acid/locked nucleic acid (2′,4′-BNA/LNA) with exceptionally high duplex-forming capability toward complementary sequences. In recent years, we have focused on developing further intensified bridged nucleic acids with high enzymatic resistance, sequence specificity, high in vivo efficacy, and low toxicity. Herein, we report numerous promising bridged nucleic acids that have been developed in our laboratory since the introduction of 2′,4′-BNA/LNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akabane-Nakata M, Obika S, Hari Y (2014) Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA. Org Biomol Chem 12:9011–9015

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Kodama T, Mori K, Imanishi T, Obika S (2010) A novel bridged nucleoside bearing a conformationally switchable sugar moiety in response to redox changes. Chem Commun 46:8058–8060

    Article  CAS  Google Scholar 

  • Bernardo BC, Gao XM, Winbanks CE et al (2012) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA 109:17615–17620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolli M, Leumann C (1995) Triple-helix formation of Oligodeoxynucleotides containing[(3′S,5′R)-2′-Deoxy-3′,5′-ethano-β-D-ribofuranosyl]nucleosides(“Bicyclo-deoxynucleosides”). Angew Chem Int Ed 34:694–696

    Article  CAS  Google Scholar 

  • Cui L, Nakano K, Obchoei S, Setoguchi K, Matsumoto M, Yamamoto T, Obika S, Shimada K, Hiraoka N (2017) Small nucleolar noncoding RNA SNORA23, up-regulated in human pancreatic ductal adenocarcinoma, regulates expression of Spectrin repeat-containing nuclear envelope 2 to promote growth and metastasis of xenograft tumors in mice. Gastroenterology 153:292–306

    Article  CAS  PubMed  Google Scholar 

  • Crooke ST, Liang XH, Baker BF, Crooke RM (2021) Antisense technology: a review. J Biol Chem 296:100416

    Google Scholar 

  • Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25:4429–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii A, Nakagawa O, Kishimoto Y, Nakatsuji Y, Nozaki N, Obika S (2020) Oligonucleotides containing Phenoxazine artificial nucleobases: triplex-forming abilities and fluorescence properties. Chembiochem 21:860–864

    Article  CAS  PubMed  Google Scholar 

  • Fujisaka A, Hari Y, Takuma H, Rahman SMA, Yoshikawa H, Pang J, Imanishi T, Obika S (2019) Effective syntheses of 2′,4′-BNA NC monomers bearing adenine, guanine, thymine, and 5-methylcytosine, and the properties of oligonucleotides fully modified with 2′,4′-BNA NC. Bioorg Med Chem 27:1728–1741

    Article  CAS  PubMed  Google Scholar 

  • Gryaznov SM (1999) Oligonucleotide N3′→P5′ phosphoramidates as potential therapeutic agents. Biochim Biophys Acta 1489:131–140

    Article  CAS  PubMed  Google Scholar 

  • Habuchi T, Yamaguchi T, Obika S (2019a) Thioamide-bridged nucleic acid (thioAmNA) containing thymine or 2-Thiothymine: duplex-forming ability, base discrimination, and enzymatic stability. Chembiochem 20:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Habuchi T, Yamaguchi T, Aoyama H, Horiba M, Ito KR, Obika S (2019b) Hybridization and mismatch discrimination abilities of 2′,4′-bridged nucleic acids bearing 2-Thiothymine or 2-Selenothymine nucleobase. J Org Chem 84:1430–1439

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Kodama T, Takegaki Y, Morihiro K, Ito KR, Obika S (2017) Synthesis and properties of 7-Deazapurine- and 8-Aza-7-deazapurine-locked nucleic acid analogues: effect of the Glycosidic torsion angle. J Org Chem 82:25–36

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Matsumoto S, Hirota S et al (2019) Chemically modified antisense oligonucleotide against ARL4C inhibits primary and metastatic liver tumor growth. Mol Cancer Ther 18:602–612

    Article  CAS  PubMed  Google Scholar 

  • Hari Y, Obika S (2016) 2′,4′-bridged nucleic acids for targeting double-stranded DNA. In: Nakatani K, Tor Y (eds) Modified nucleic acids. Nucleic acids and molecular biology, vol 31. Spinger, Cham, pp 209–219

    Google Scholar 

  • Hari Y, Obika S, Ohnishi R, Eguchi K, Osaki T, Ohishi H, Imanishi T (2006) Synthesis and properties of 2′-O,4′-C-methyleneoxymethylene bridged nucleic acid. Bioorg Med Chem 14:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Hari Y, Morikawa T, Osawa T, Obika S (2013a) Synthesis and properties of 2′-O,4′-C-ethyleneoxy bridged 5-methyluridine. Org Lett 15:3702–3705

    Article  CAS  PubMed  Google Scholar 

  • Hari Y, Osawa T, Kotobuki Y, Yahara A, Shrestha AR, Obika S (2013b) Synthesis and properties of thymidines with six-membered amide bridge. Bioorg Med Chem 21:4405–4412

    Article  CAS  PubMed  Google Scholar 

  • Hassan AEA, Sheng J, Zhang W, Huang Z (2010) High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc 132:2120–2121

    Article  CAS  PubMed  Google Scholar 

  • Horiba M, Yamaguchi T, Obika S (2016) Synthesis of scpBNA-mC, -A, and -G monomers and evaluation of the binding affinities of scpBNA-modified oligonucleotides toward complementary ssRNA and ssDNA. J Org Chem 81:11000–11008

    Article  CAS  PubMed  Google Scholar 

  • Horie N, Kumagai S, Kotobuki Y, Yamaguchi T, Obika S (2018) Org Bimol Chem Facile synthesis and fundamental properties of an N-methylguanidine-bridged nucleic acid (GuNA[NMe]). Org Bimol Chem 16:6531

    Article  CAS  Google Scholar 

  • Horie N, Yamaguchi T, Kumagai S, Obika S (2021) Synthesis and properties of oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing adenine, guanine, or 5-methylcytosine nucleobases. Beilstein J Org Chem 17:622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Waki R, Fujisaka A, Ito KR, Obika S (2016) In vitro and in vivo biophysical properties of oligonucleotides containing 5′-thio nucleosides. Drug Discov Ther 10:263–270

    Article  CAS  PubMed  Google Scholar 

  • Islam MA, Fujisaka A, Mori S, Ito KR, Yamaguchi T, Obika S (2018) Synthesis and biophysical properties of 5′-thio-2′,4′-BNA/LNA oligonucleotide. Bioorg Med Chem 26:3634–3638

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Kasahara Y, Shimizu D, Miwa T, Umeda S, Sawaki K, Nakamura S, Kodera Y, Obika S (2020) Amido-bridged nucleic acid-modified antisense oligonucleotides targeting SYT13 to treat peritoneal metastasis of gastric cancer. Mol Ther Nucleic Acids 22:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto Y, Fujii A, Nakagawa O, Nagata T, Yokota T, Hari Y, Obika S (2017) Synthesis and thermal stabilities of oligonucleotides containing 2′-O,4′-C-methylene bridged nucleic acid with a phenoxazine base. Org Bimol Chem 15:8145–8152

    Article  CAS  Google Scholar 

  • Kishimoto Y, Nakagawa O, Fujii A, Yoshioka K, Nagata T, Yokota T, Hari Y, Obika S (2021) 2′,4′-BNA/LNA with 9-(2-Aminoethoxy)-1,3-diaza-2-oxophenoxazine efficiently forms duplexes and has enhanced enzymatic resistance. Chem Eur J 27:2427–2438

    Article  CAS  PubMed  Google Scholar 

  • Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Rum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198

    Article  CAS  PubMed  Google Scholar 

  • Liboska R, Snášel J, Barvík I, Buděšínský M, Pohl R, Toík Z, Páv O, Rejman D, Novák P, Rosenberg I (2011) 4′-Alkoxy oligodeoxynucleotides: a novel class of RNA mimics. Org Biomol Chem 9:8261–8267

    Google Scholar 

  • Lu K, Duan Q-P, Ma L, Zhao D-X (2010) Chemical strategies for the synthesis of peptide−oligonucleotide conjugates. Bioconjug Chem 21:187–202

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, Obika S, Takehara T, Morii E, Okuyama H, Kikuchi A (2019) GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun 10:3882

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuoka Y, Kodama T, Ohnishi R, Hari Y, Imanishi T, Obika S (2009) A bridged nucleic acid, 2′,4′-BNACOC: synthesis of fully modified oligonucleotides bearing thymine, 5-methylcytosine, adenine and guanine 2′,4′-BNACOC monomers and RNA-selective nucleic-acid recognition. Nucleic Acids Res 37:1225–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuoka Y, Fujimura Y, Waki R, Kugimiya A, Yamamoto T, Hari Y, Obika S (2014) Sulfonamide-bridged nucleic acid: synthesis, high rna selective hybridization, and high nuclease resistance. Org Lett 16:5640–5643

    Article  CAS  PubMed  Google Scholar 

  • Mitsuoka Y, Yamamoto T, Kugimiya A et al (2017) Triazole- and Tetrazole-bridged nucleic acids: synthesis, duplex stability, nuclease resistance, and in vitro and in vivo antisense potency. J Org Chem 82:12–24

    Article  CAS  PubMed  Google Scholar 

  • Miyashita K, Rahman SMA, Seki S, Obika S, Imanishi T (2007) N-Methyl substituted 2′,4′-BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization. Chem Commun 3765–3767

    Google Scholar 

  • Moai Y, Kodama T (2020) Recent developments of artificial functional oligo nucleic acids. Tetrahedron Lett 61:151708

    Article  CAS  Google Scholar 

  • Mori K, Kodama T, Baba T, Obika S (2011) Bridged nucleic acid conjugates at 6′-thiol: synthesis, hybridization properties and nuclease resistances. Org Bimol Chem 9:5272

    Article  CAS  Google Scholar 

  • Morihiro K, Kodama T, Nishida M, Imanishi T, Obika S (2009) Synthesis of light-responsive bridged nucleic acid and changes in affinity with complementary ssRNA. Chembiochem 10:1784–1788

    Article  CAS  PubMed  Google Scholar 

  • Morihiro K, Kodama T, Obika S (2011) Benzylidene acetal type bridged nucleic acids: changes in properties upon cleavage of the bridge triggered by external stimuli. Chem Eur J 17:7918–7926

    Article  CAS  PubMed  Google Scholar 

  • Morihiro K, Kodama T, Kentefu MY, Veedu RN, Obika S (2013) Selenomethylene locked nucleic acid enables reversible hybridization in response to redox changes. Angew Chem Int Ed 52:5074–5078

    Article  CAS  Google Scholar 

  • Morita K, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M (2002) 2′-O,4′-C-ethylene-bridged nucleic acids (ENA): highly nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett 12:73–76

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Takagi M, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M (2003) Synthesis and properties of 2′-O,4′-C-ethylene-bridged nucleic acids (ENA) as effective antisense oligonucleotides. Bioorg Med Chem 11:2211–2226

    Article  CAS  PubMed  Google Scholar 

  • Nahar S, Singh A, Morihiro K, Moai Y, Kodama T, Obika S, Maiti S (2016) Systematic evaluation of biophysical and functional characteristics of Selenomethylene-locked nucleic acid-mediated inhibition of miR-21. Biochemistry 55:7023–7032

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Baba T, Kodama T, Yahara A, Imanishi T, Obika S (2010) Synthesis, RNA selective hybridization and high nuclease resistance of an oligonucleotide containing novel bridged nucleic acid with cyclic urea structure. Chem Commun 46:5283–5285

    Article  CAS  Google Scholar 

  • Obika S (2000) Syntheses and properties of Conformationally restrained nucleosides and oligonucleotides analogues. Yakugaku Zasshi 120:147–158

    Article  CAS  PubMed  Google Scholar 

  • Obika S, Nanbu D, Hari Y, Morio K, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, −endo sugar puckering. Tetrahedron Lett 38:8735–8738

    Article  CAS  Google Scholar 

  • Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–5404

    Article  CAS  Google Scholar 

  • Obika S, Uneda T, Sugimoto T, Nanbu D, Minami T, Doi T, Imanishi T (2001a) 2-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA): synthesis and triplex-forming properties. Bioorg Med Chem 9:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Obika S, Onoda M, Andoh J, Imanishi T, Morita K, Koizumi M (2001b) 3′-Amino-2′,4′-BNA: novel bridged nucleic acids having an N3′→P5′ phosphoramidate linkage. Chem Commun 1992–1993

    Google Scholar 

  • Obika S, Nakagawa O, Hiroto A, Hari Y, Imanishi T (2003) Synthesis and properties of a novel bridged nucleic acid with a P3′ → N5′ phosphoramidate linkage, 5′-amino-2′,4′-BNA. Chem Commun 2202–2203

    Google Scholar 

  • Obika S, Rahman SMA, Song B, Onoda M, Koizumi M, Morita K, Imanishi T (2008) Synthesis and properties of 3′-amino-2′,4′-BNA, a bridged nucleic acid with a N3′→P5′ phosphoramidate linkage. Bioorg Med Chem 16:9230–9237

    Article  CAS  PubMed  Google Scholar 

  • Obika S, Rahman SMA, Imanishi T, Kawada Y, Baba T, Fujisaka A (2010) Bridged nucleic acids: development, synthesis and properties. Heterocycles 81:1347–1392

    Article  CAS  Google Scholar 

  • Okamoto I, Shohda KI, Seio K, Sekine M (2003) A new route to 2′-O-Alkyl-2-thiouridine derivatives via 4-O-protection of the Uracil Base and hybridization properties of oligonucleotides incorporating these modified nucleoside derivatives. J Org Chem 68:9971–9982

    Article  CAS  PubMed  Google Scholar 

  • Okamoto I, Seio K, Sekine M (2008) Study of the base discrimination ability of DNA and 2′-O-methylated RNA oligomers containing 2-thiouracil bases towards complementary RNA or DNA strands and their application to single base mismatch detection. Bioorg Med Chem 16:6034–6041

    Article  CAS  PubMed  Google Scholar 

  • Ortega J-A, Blas JR, Orozco M, Grandas A, Pedroso E, Robles J (2007) Binding affinities of oligonucleotides and PNAs containing Phenoxazine and G-clamp cytosine analogues are unusually sequence-dependent. Org Lett 9:4503–4506

    Article  CAS  PubMed  Google Scholar 

  • Osawa T, Obika S, Hari Y (2016) Synthesis and properties of novel 2′-C,4′-C-ethyleneoxy-bridged 2′-deoxyribonucleic acids with exocyclic methylene groups. Org Biomol Chem 14:9481–9484

    Article  CAS  PubMed  Google Scholar 

  • Osawa T, Kim H, Shoji M, Saijo M, Dohi M, Ito Y, Obika S, Hari Y (2019) Synthesis of 2′-C,4′-C-Methyleneoxy-bridged thymidine derivatives and properties of modified oligonucleotides. J Org Chem 84:13336–13344

    Article  CAS  PubMed  Google Scholar 

  • Prakash TP, Siwkowski A, Allerson CR, Migawa MT, Lee S, Gaus HJ, Black C, Seth PP, Swayze EE, Bhat B (2010) Antisense oligonucleotides containing conformational constrained 2′,4′-(N-Methoxy)aminomethylene and 2′4′- aminooxymethylene and 2′-O,′-C-aminomethylene bridged nucleoside analogues show improved potency in animal models. J Med Chem 53:1636–1165

    Article  CAS  PubMed  Google Scholar 

  • Rahman SMA, Seki S, Obika S, Yoshikawa H, Miyashita K, Imanishi T (2008) Design, synthesis, and properties of 2′,4′-BNANC: a bridged nucleic acid analogue. J Am Chem Soc 130:4886–4896

    Article  CAS  PubMed  Google Scholar 

  • Rahman SMA, Imanishi T, Obika S (2009) Synthesis of several types of bridged nucleic acids. Chem Lett 38:512–517

    Article  Google Scholar 

  • Reardon S (2021) A complete human genome sequence is close: how scientists filled in the gaps. Nature 594:158–159

    Article  CAS  PubMed  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–221

    Article  CAS  PubMed  Google Scholar 

  • Saenger W (1984) Methods: X-ray crystallography, potential energy calculations, and spectroscopy. In: Cantor RC (ed) Principles of nucleic acid structure. Springer, Berlin, p 46

    Chapter  Google Scholar 

  • Seela F, Peng X (2006) 7-functionalized 7-Deazapurine Ribonucleosides related to 2-Aminoadenosine, guanosine, and Xanthosine: glycosylation of Pyrrolo[2,3-d ]pyrimidines with 1-O-Acetyl-2,3,5-tri-O-benzoyl-d-ribofuranose. J Org Chem 71:81–90

    Article  CAS  PubMed  Google Scholar 

  • Seth PP, Allerson CR, Berdeja A, Siwkowski A, Pallan PS, Gaus H, Prakash TP, Watt AT, Egli M, Swayze EE (2010) An exocyclic methylene group acts as a bioisostere of the 2′-oxygen atom in LNA. J Am Chem Soc 132:14942–14950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setoguchi K, Cui L, Hachisuka N, Obchoei S, Shinkai K, Hyodo F, Kato K, Wada F, Yamamoto T, Harada-Shiba M, Obika S, Nakano K (2017) Antisense oligonucleotides targeting Y-box binding Protein-1 inhibit tumor angiogenesis by downregulating Bcl-xL-VEGFR2/-tie axes. Mol Ther Nucleic Acids 9:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Sharma RK, Singh SK (2014) Antisense oligonucleotides: modifications and clinical trials. Med Chem Commun 5:1454–1471

    Article  CAS  Google Scholar 

  • Shimo T, Tachibana K, Saito K et al (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42:8174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimojo M, Kasahara Y, Inoue M, Tsunoda S, Shudo Y, Kurata T, Obika S (2019) A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer. Sci Rep 9:7618

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivarov V, Ivanova M, Naumova E (2014) Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC) probes. PLoS One 9:e99769

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha AR, Hari Y, Yahara A, Osawa T, Obika S (2011) Synthesis and properties of a bridged nucleic acid with a perhydro-1,2-oxazin-3-one ring. J Org Chem 76:9891–9899

    Article  CAS  PubMed  Google Scholar 

  • Shrestha AR, Kotobuki Y, Hari Y, Obika S (2013) Guanidine bridged nucleic acid (GuNA): an effect of a cationic bridged nucleic acid on DNA binding affinity. Chem Commun 50:575–577

    Article  Google Scholar 

  • Singh SK, Koshkin AA, Wengel J, Nielsen P (1998a) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 455–456

    Google Scholar 

  • Singh SK, Kumar R, Wengel J (1998b) Synthesis of novel Bicyclo[2.2.1] Ribonucleosides: 2′-amino- and 2′-Thio-LNA monomeric nucleosides. J Org Chem 63:6078–6079

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Choong CJ, Nakamori M et al (2019) Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci Rep 9:7567

    Article  PubMed  PubMed Central  Google Scholar 

  • Umemoto T, Masada S, Miyata K, Ogasawara-Shimizu M, Murata S, Nishi K, Ogi K, Hayase Y, Cho N (2017) Direct and practical synthesis of 2′-O,4′-C-aminomethylene-bridged nucleic acid purine derivatives by transglycosylation. Tetrahedron 73:1211–1218

    Article  CAS  Google Scholar 

  • Wan WB, Seth PP (2016) The medicinal chemistry of therapeutic oligonucleotides. J Med Chem 59:9645–9667

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gunic E, Girardet JL, Stoisavljevic V (1999) Conformationally locked nucleosides. Synthesis and hybridization properties of oligodeoxynucleotides containing 2′,4′-C-bridged 2′-deoxynucleosides. Bioorg Med Chem Lett 9:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Wheeler M, Chardon A, Goubet A, Morihiro K, Tsan SY, Edwards SL, Kodama T, Obika S, Veedu RN (2012) Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases. Chem Commun 48:11020–11022

    Article  CAS  Google Scholar 

  • Xu J, Liu Y, Dupouy C, Chattopadhyaya J (2009) Synthesis of conformationally locked Carba-LNAs through intramolecular free-radical addition to C=N. Electrostatic and steric implication of the carba-LNA substituents in the modified oligos for nuclease and thermodynamic stabilities. J Org Chem 74:6534–6554

    Article  CAS  PubMed  Google Scholar 

  • Yahara A, Shrestha AR, Yamamoto T, Hari Y, Osawa T, Yamaguchi M, Nishida M, Kodama T, Obika S (2012) Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency. Chembiochem 13:2513–2516

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Obika S (2019) Derivative synthesis toward enhancement of the biophysical properties of 2′,4′-bridged nucleic acids. J Syn Org Chem Jpn 77:994–1004

    Article  CAS  Google Scholar 

  • Yamaguchi T, Horiba M, Obika S (2015) Synthesis and properties of 2′-O,4′-C-spirocyclopropylene bridged nucleic acid (scpBNA), an analogue of 2′,4′-BNA/LNA bearing a cyclopropane ring. Chem Commun 51:9737–9740

    Article  CAS  Google Scholar 

  • Yamamoto T, Yasuhara H, Wada F, Harada-Shiba M, Imanishi T, Obika S (2012) Superior silencing by 2′,4′-BNANC-based short antisense oligonucleotides compared to 2′,4′-BNA/LNA-based apolipoprotein B antisense inhibitors. J Nucleic Acids 2012:707323

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Obika .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Islam, M.A., Obika, S. (2023). Bridged Nucleic Acids for Therapeutic Oligonucleotides. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_18

Download citation

Publish with us

Policies and ethics