Skip to main content

The Effects of FANA Modifications on Non-canonical Nucleic Acid Structures

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Initially explored for its antiviral applications, the 2′-deoxy-2′-fluoroarabino nucleoside is now widely incorporated into oligonucleotides for applications in structure elucidation, synthetic genetics, and therapeutics, among others. This chapter explores the use of 2′-fluoroarabino nucleic acids (FANA) in the context of noncanonical nucleic acid structures, namely triple helices, G-quadruplexes, and i-motifs. For the last three decades, FANA has been utilized to understand biophysical properties associated with these structures and to stabilize certain conformers or even manipulate their topology. Owing to its DNA-like character and the flexibility of its sugar pucker, FANA has also been explored in biochemical contexts, including its interactions with thrombin and human telomerase. Despite years of research, novel properties of FANA are still being uncovered today; indeed, FANA promises to consistently serve as an exemplary tool for chemists and molecular biologists investigating nucleic acid phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Assi H, Harkness RWV, Martin-Pintado N, Wilds CJ, Campos-Olivas R, Mittermaier AK, González C, Damha MJ (2016) Stabilization of i-motif structures by 2′-β-fluorination of DNA. Nucleic Acids Res 44(11):4998–5009

    Article  CAS  Google Scholar 

  • Abou Assi H, El-Khoury R, González C, Damha MJ (2017) 2′-Fluoroarabinonucleic acid modification traps G-quadruplex and i-motif structures in human telomeric DNA. Nucleic Acids Res 45(20):11535–11546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abou Assi H, Garavís M, González C, Damha MJ (2018a) I-motif DNA: structural features and significance to cell biology. Nucleic Acids Res 46(16):8038–8056

    Article  PubMed  PubMed Central  Google Scholar 

  • Abou Assi H, Lin YC, Serrano I, González C, Damha MJ (2018b) Probing synergistic effects of DNA methylation and 2′-β-fluorination on i-motif stability. Chem Eur J 24(2):471–477

    Article  PubMed  Google Scholar 

  • Anzahaee MY, Watts JK, Alla NR, Nicholson AW, Damha MJ (2011) Energetically important C−H···F−C Pseudohydrogen bonding in water: evidence and application to rational Design of Oligonucleotides with high binding affinity. J Am Chem Soc 133(4):728–731

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC (2007) A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 282(44):32433–32441

    Article  CAS  PubMed  Google Scholar 

  • Bryan TM (2020) G-Quadruplexes at telomeres: friend or foe? Molecules 25(16):3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho J, Mergny J-L, Salgado GF, Queiroz JA, Cruz C (2020) G-quadruplex, friend or foe: the role of the G-quartet in anticancer strategies. Trends Mol Med 26(9):848–861

    Article  CAS  PubMed  Google Scholar 

  • Cavaliere A, Probst KC, Westwell AD, Slusarczyk M (2017) Fluorinated nucleosides as an important class of anticancer and antiviral agents. Future Med Chem 9(15):1809–1833

    Article  CAS  PubMed  Google Scholar 

  • Collin D, Gehring K (1998) Stability of chimeric DNA/RNA cytosine tetrads: implications for i-motif formation by RNA. J Am Chem Soc 120(17):4069–4072

    Article  CAS  Google Scholar 

  • Damha MJ, Wilds CJ, Noronha A, Brukner I, Borkow G, Arion D, Parniak MA (1998) Hybrids of RNA and Arabinonucleic acids (ANA and 2‘F-ANA) are substrates of ribonuclease H. J Am Chem Soc 120(49):12976–12977

    Article  CAS  Google Scholar 

  • Day HA, Pavlou P, Waller ZAE (2014) I-motif DNA: structure, stability and targeting with ligands. Biorg Med Chem 22(16):4407–4418

    Article  CAS  Google Scholar 

  • Denisov AY, Noronha AM, Wilds CJ, Trempe J-F, Pon RT, Gehring K, Damha MJ (2001) Solution structure of an arabinonucleic acid (ANA)/RNA duplex in a chimeric hairpin: comparison with 2′-fluoro-ANA/RNA and DNA/RNA hybrids. Nucleic Acids Res 29(21):4284–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doluca O, Withers JM, Filichev VV (2013) Molecular engineering of guanine-Rich sequences: Z-DNA, DNA triplexes, and G-Quadruplexes. Chem Rev 113(5):3044–3083

    Article  CAS  PubMed  Google Scholar 

  • Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36(16):5123–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzatko S, Krafcikova M, Hänsel-Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny J-L, Foldynova-Trantirkova S, Trantirek L (2018) Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed 57(8):2165–2169

    Article  CAS  Google Scholar 

  • El-Khoury R, Damha MJ (2021) 2′-Fluoro-arabinonucleic acid (FANA): a versatile tool for probing biomolecular interactions. Acc Chem Res 54(9):2287–2297

    Article  CAS  PubMed  Google Scholar 

  • El-Khoury R, McKenzie LK, Thorpe JD, Damha MJ, Hollenstein M (2021) Recent progress in non-native nucleic acid modifications. Chem Soc Rev 50. https://doi.org/10.1039/d0cs01430c

  • Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79(8):2023–2024

    Article  CAS  Google Scholar 

  • Fortin M, D'Anjou H, Higgins M-È, Gougeon J, Aubé P, Moktefi K, Mouissi S, Séguin S, Séguin R, Renzi PM, Paquet L, Ferrari N (2009) A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir Res 10(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehring K, Leroy J-L, Guéron M (1993) A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363(6429):561–565

    Article  CAS  PubMed  Google Scholar 

  • Guimond A, Viau E, Aubé P, Renzi PM, Paquet L, Ferrari N (2008) Advantageous toxicity profile of inhaled antisense oligonucleotides following chronic dosing in non-human primates. Pulm Pharmacol Ther 21(6):845–854

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90(8):1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S-G, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38(11):e125–e125

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser CE, Van Ert NA, Agrawal P, Chawla R, Yang D, Hurley LH (2017) Insight into the complexity of the i-motif and G-Quadruplex DNA structures formed in the KRAS promoter and subsequent drug-induced gene repression. J Am Chem Soc 139(25):8522–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrick S, Kang H-J, Alam MP, Madathil MM, Agrawal P, Gokhale V, Yang D, Hecht SM, Hurley LH (2014) The dynamic character of the BCL2 promoter i-motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J Am Chem Soc 136(11):4161–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keniry MA (2000) Quadruplex structures in nucleic acids. Biopolymers 56(3):123–146

    Article  CAS  PubMed  Google Scholar 

  • Kois P, Tocik Z, Spassova M, Ren W-Y, Rosenberg I, Soler JF, Watanabe KA (1993) Synthesis and some properties of modified oligonucleotides. II. Oligonucleotides containing 2′-Deoxy-2′-fluoro-β-D-arabinofuranosyl pyrimidine nucleosides. Nucleosides Nucleotides 12(10):1093–1109

    Article  CAS  Google Scholar 

  • Lacroix L, Mergny J-L, Leroy J-L, Hélène C (1996) Inability of RNA to form the i-motif: implications for triplex formation. Biochemistry 35(26):8715–8722

    Article  CAS  PubMed  Google Scholar 

  • Le Doan T, Perrouault L, Praseuth D, Habhoub N, Decout J-L, Thuong NT, Lhomme J, Hélène C (1987) Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-(α)-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res 15(19):7749–7760

    Article  PubMed  PubMed Central  Google Scholar 

  • Lech CJ, Li Z, Heddi B, Phan AT (2012) 2′-F-ANA-guanosine and 2′-F-guanosine as powerful tools for structural manipulation of G-quadruplexes. Chem Commun 48(93):11425–11427

    Article  CAS  Google Scholar 

  • Li Z, Lech CJ, Phan AT (2013) Sugar-modified G-quadruplexes: effects of LNA-, 2′F-RNA– and 2′F-ANA-guanosine chemistries on G-quadruplex structure and stability. Nucleic Acids Res 42(6):4068–4079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lietard J, Abou Assi H, Gómez-Pinto I, González C, Somoza MM, Damha MJ (2017) Mapping the affinity landscape of thrombin-binding aptamers on 2΄F-ANA/DNA chimeric G-Quadruplex microarrays. Nucleic Acids Res 45(4):1619–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276(5312):561–567

    Article  CAS  PubMed  Google Scholar 

  • Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-Quadruplex scaffold. J Am Chem Soc 128(30):9963–9970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A 90(8):3745–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Pintado N, Yahyaee-Anzahaee M, Deleavey GF, Portella G, Orozco M, Damha MJ, González C (2013) Dramatic effect of Furanose C2′ substitution on structure and stability: directing the folding of the human Telomeric Quadruplex with a single fluorine atom. J Am Chem Soc 135(14):5344–5347

    Article  PubMed  Google Scholar 

  • McGorman B, Fantoni NZ, O’Carroll S, Ziemele A, El-Sagheer AH, Brown T, Kellett A (2022) Enzymatic synthesis of chemical nuclease triplex-forming oligonucleotides with gene-silencing applications. Nucleic Acids Res 50(10):5467–5481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238(4827):645–650

    Article  CAS  PubMed  Google Scholar 

  • Moye AL, Porter KC, Cohen SB, Phan T, Zyner KG, Sasaki N, Lovrecz GO, Beck JL, Bryan TM (2015) Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun 6(1):7643

    Article  PubMed  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56(1):555–583

    Article  CAS  PubMed  Google Scholar 

  • Niu K, Zhang X, Deng H, Wu F, Ren Y, Xiang H, Zheng S, Liu L, Huang L, Zeng B, Li S, Xia Q, Song Q, Palli SR, Feng Q (2017) BmILF and i-motif structure are involved in transcriptional regulation of BmPOUM2 in Bombyx mori. Nucleic Acids Res 46(4):1710–1723

    Article  PubMed Central  Google Scholar 

  • Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou M-P, González C, Beck JL, Damha MJ, van Oijen AM, Bryan TM (2020) A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. elife 9:e56428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng CG, Damha MJ (2007a) Polymerase-directed synthesis of 2‘-Deoxy-2′-fluoro-β-D-arabinonucleic acids. J Am Chem Soc 129(17):5310–5311

    Article  CAS  PubMed  Google Scholar 

  • Peng CG, Damha MJ (2007b) G-quadruplex induced stabilization by 2′-deoxy-2′-fluoro-d-arabinonucleic acids (2′F-ANA). Nucleic Acids Res 35(15):4977–4988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res 34(19):5715–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew S-Y, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randazzo A, Esposito V, Ohlenschläger O, Ramachandran R, Virgilio A, Mayol L (2005) Structural studies on LNA Quadruplexes. Nucleosides Nucleotides Nucleic Acids 24(5-7):795–800

    Article  CAS  PubMed  Google Scholar 

  • Renciuk D, Kejnovská I, Skoláková P, Bednárová K, Motlová J, Vorlícková M (2009) Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res 37(19):6625–6634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robidoux S, Damha MJ (1997) D-2-deoxyribose and D-arabinose, but not D-ribose, stabilize the cytosine tetrad ( i -DNA). Structure 15(3):529–535

    CAS  Google Scholar 

  • Rosenberg I, Soler JF, Tocik Z, Ren W-Y, Ciszewski LA, Kois P, Pankiewicz KW, Spassova M, Watanabe KA (1993) Synthesis of Oligodeoxynucleotides containing the C-nucleoside and 2′- Deoxy-2′-Fluoro-ara-nucleoside moieties by the H-phosphonate method. Nucleosides Nucleotides 12(3-4):381–401

    Article  CAS  Google Scholar 

  • Roxo C, Kotkowiak W, Pasternak A (2019) G-Quadruplex-forming Aptamers—characteristics, applications, and perspectives. Molecules 24(20):3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusling DA, Powers VEC, Ranasinghe RT, Wang Y, Osborne SD, Brown T, Fox KR (2005) Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 33(9):3025–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultze P, Smith FW, Feigon J (1994) Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure 2(3):221–233

    Article  CAS  PubMed  Google Scholar 

  • Sedghi Masoud S, Nagasawa K (2018) I-motif-binding ligands and their effects on the structure and biological functions of i-motif. Chem Pharm Bull 66(12):1091–1103

    Article  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5):787–791

    Article  CAS  PubMed  Google Scholar 

  • Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8(3):141–150

    Article  PubMed  Google Scholar 

  • Snoussi K, Nonin-Lecomte S, Leroy JL (2001) The RNA i-motif. J Mol Biol 309(1):139–153

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Cui Y, Mao H, Hurley LH (2016) A Mechanosensor mechanism controls the G-Quadruplex/i-motif molecular switch in the MYC promoter NHE III1. J Am Chem Soc 138(42):14138–14151

    Article  CAS  PubMed  Google Scholar 

  • Taylor AI, Houlihan G, Holliger P (2019) Beyond DNA and RNA: the expanding toolbox of synthetic genetics. Cold Spring Harb Perspect Biol 11(6)

    Google Scholar 

  • Trempe J-F, Wilds CJ, Denisov AY, Pon RT, Damha MJ, Gehring K (2001) NMR solution structure of an oligonucleotide hairpin with a 2‘F-ANA/RNA stem: implications for RNase H specificity toward DNA/RNA hybrid duplexes. J Am Chem Soc 123(21):4896–4903

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.; Blackburn, E. H., De Novo telomere addition by Tetrahymena telomerase in vitro. EMBO J 1997, 16 (4), 866-879

    Google Scholar 

  • Watanabe KA, Reichman U, Hirota K, Lopez C, Fox JJ (1979) Nucleosides. 110. Synthesis and antiherpes virus activity of some 2′-fluoro-2′-deoxyarabinofuranosylpyrimidine nucleosides. J Med Chem 22(1):21–24

    Article  CAS  PubMed  Google Scholar 

  • Watts JK, Damha MJ (2008) 2′F-Arabinonucleic acids (2′F-ANA) — history, properties, and new frontiers. Can J Chem 86(7):641–656

    Article  Google Scholar 

  • Watts JK, Martín-Pintado N, Gómez-Pinto I, Schwartzentruber J, Portella G, Orozco M, González C, Damha MJ (2010) Differential stability of 2′F-ANA•RNA and ANA•RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility. Nucleic Acids Res 38(7):2498–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilds CJ, Damha MJ (1999) Duplex recognition by oligonucleotides containing 2‘-Deoxy-2′-fluoro-d-arabinose and 2‘-Deoxy-2′-fluoro-d-ribose. Intermolecular 2‘-OH−phosphate contacts versus sugar puckering in the stabilization of triple-helical complexes. Bioconjug Chem 10(2):299–305

    Article  CAS  PubMed  Google Scholar 

  • Wilds CJ, Damha MJ (2000) 2′-Deoxy-2′-fluoro-β-D-arabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucleic Acids Res 28(18):3625–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59(5):871–880

    Article  CAS  PubMed  Google Scholar 

  • Wright JA, Wilson DP, Fox JJ (1970) Nucleosides. LXIV. Fluoro sugar analogs of arabinosyl- and xylosylcytosines. J Med Chem 13(2):269–272

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Devi G, Shao F (2015) Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org Biomol Chem 13(20):5646–5651

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wu RR, Rodgers MT (2013) Base-pairing energies of proton-bound homodimers determined by guided ion beam tandem mass spectrometry: application to cytosine and 5-substituted Cytosines. Anal Chem 85(22):11000–11006

    Article  CAS  PubMed  Google Scholar 

  • Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) I-motif DNA structures are formed in the nuclei of human cells. Nat Chem 10(6):631–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the following funding agencies: the European Union Marie Sklodowska Curie Action (799693, to M.G.), the Canadian Natural Sciences and Engineering Research Council of Canada (Discovery Grant to M.J.D.), and the Fonds de Recherche du Québec – Nature et Technologies Doctoral Scholarship (DE, to R.E.K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masad J. Damha .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El-Khoury, R., Garavís, M., Damha, M.J. (2023). The Effects of FANA Modifications on Non-canonical Nucleic Acid Structures. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_16

Download citation

Publish with us

Policies and ethics