Skip to main content

Hexitol Nucleic Acid (HNA): From Chemical Design to Functional Genetic Polymer

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Chemically modified nucleic acids have become crucial tools across a diverse range of sciences. They are extensively used not only as diagnostic and therapeutic agents to modulate gene expression or impede protein function by binding a specific RNA sequence or target protein but also in synthetic biology, particularly in the context of artificial genetic polymers (XNAs). In order to enable maximum scope for all in vivo applications, it is pivotal for oligonucleotides to form thermodynamically and metabolically stable helical structures via self- or cross-pairing with natural complements. In this respect, the discovery of hexitol nucleic acid (HNA), consisting of a phosphorylated 1,5-anhydrohexitol backbone and natural nucleobases, has driven many significant advances in these areas, and especially in the last decade, numerous novel approaches have emerged that overstepped the molecular and functional boundaries of extant biopolymers. Herein, we discuss the more recent progress that has been made to synthesize HNA as well as related six-membered nucleic acids [altritol nucleic acid (ANA), FHNA (3′-fluorohexitol nucleic acid), cyclohexene nucleic acid (CeNA), and 2′-fluoro cyclohexene nucleic acid (F-CeNA)] involving optimized and novel chemical and enzymatic methods, and we highlight a number of selected examples of in vitro and in vivo biological and biomedical applications in which such synthetic polymers played a crucial role. Despite most of these efforts are still at their early stages, the influence of these modified nucleic acids in medicine and biotechnology is destined to increase, especially judging from their impressive and unique abilities.

The Figure 2, 3, 7 and 9 were created using BioRender.com and the figures 4, 5, 6 and 8 were partially created using BioRender.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov M, Herdewijn P (2007) Synthesis of altritol nucleoside phosphoramidites for oligonucleotide synthesis. Curr Protoc Nucleic Acid Chem 30:1.18.11–1.18.21

    Article  Google Scholar 

  • Abramov M, Schepers G, Van Aerschot A, Van Hummelen P, Herdewijn P (2008) HNA and ANA high-affinity arrays for detections of DNA and RNA single-base mismatches. Biosens Bioelectron 23:1728–1732

    Article  CAS  PubMed  Google Scholar 

  • Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin K-P, Vita G, Attarian S, Planté-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

    Article  CAS  PubMed  Google Scholar 

  • Aerschot Van A, Verheggen I, Hendrix C, Herdewijn P (1995) 1,5-Anhydrohexitol nucleic acids, a new promising antisense construct. Angew Chem Int Ed Eng 34:1338–1339

    Article  Google Scholar 

  • Allart B, Khan K, Rosemeyer H, Schepers G, Hendrix C, Rothenbacher K, Seela F, Van Aerschot A, Herdewijn P (1999) D-Altritol nucleic acids (ANA): hybridisation properties, stability, and initial structural analysis. Chem Eur J 5:2424–2431

    Article  CAS  Google Scholar 

  • Andersen MW, Daluge SM, Kerremans L, Herdewijn P (1996) The synthesis of modified D- and L-anhydrohexitol nucleosides. Tetrahedron Lett 37:8147–8150

    Article  CAS  Google Scholar 

  • Atkins D, Miller M, De Bouvere B, van Aerschot A, Herdewijn P (2000) Evaluation of the cellular uptake of hexitol nucleic acids in HeLa cells. Pharmazie 55:615–617

    CAS  PubMed  Google Scholar 

  • Bain JD, Switzer C, Chamberlin AR, Benner SA (1992) Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356:537–539

    Article  CAS  PubMed  Google Scholar 

  • Bande O, Abu El Asrar R, Braddick D, Dumbre S, Pezo V, Schepers G, Pinheiro VB, Lescrinier E, Holliger P, Marlière P, Herdewijn P (2015) Isoguanine and 5-methyl-isocytosine bases, in vitro and in vivo. Chemistry 21:5009–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhringer M, Roth H-J, Hunziker J, Göbel M, Krishnan R, Giger A, Schweizer B, Schreiber J, Leumann C, Eschenmoser A (1992) Warum Pentose- und nicht Hexose-Nucleinsäuren??. Teil II. Oligonucleotide aus 2′,3′-Dideoxy-β-D-glucopyranosyl-Bausteinen (‘Homo-DNS’): Herstellung. Helv Chim Acta 75:1416–1477

    Article  Google Scholar 

  • Boudou V, Kerremans L, De Bouvere B, Lescrinier E, Schepers G, Busson R, Van Aerschot A, Herdewijn P (1999) Base pairing of anhydrohexitol nucleosides with 2,6-diaminopurine, 5-methylcytosine and uracil asbase moiety. Nucleic Acids Res 27:1450–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, Babu BR, Højland T, Abramov M, Van Aerschot A, Odadzic D, Smicius R, Haas J, Andree C, Barman J, Wenska M, Srivastava P, Zhou C, Honcharenko D, Hess S, Müller E, Bobkov GV, Mikhailov SN, Fava E, Meyer TF, Chattopadhyaya J, Zerial M, Engels JW, Herdewijn P, Wengel J, Kjems J (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 37:2867–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alonzo D, Froeyen M, Schepers G, Di Fabio G, Van Aerschot A, Herdewijn P, Palumbo G, Guaragna A (2015) 1′,5′-Anhydro-l-ribo-hexitol adenine nucleic acids (α-l-HNA-A): synthesis and chiral selection properties in the Mirror image world. J Organomet Chem 80:5014–5022

    Article  Google Scholar 

  • De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D’Alonzo D, Guaragna A (2020) Structure–Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chem Eur J 26:9589–9597

    Article  PubMed  Google Scholar 

  • De S, Jabgunde AM, Patil RS, De Jonghe S, Beigelman L, Herdewijn P (2018) Synthesis of protected amino hexitol nucleosides as building blocks for oligonucleotide synthesis. J Organomet Chem 83:15155–15169

    Article  CAS  Google Scholar 

  • Declercq R, Aerschot AV, Read RJ, Herdewijn P, Meervelt LV (2002) Crystal structure of double helical hexitol nucleic acids. J Am Chem Soc 124:928–933

    Article  CAS  PubMed  Google Scholar 

  • Egli M, Pallan PS, Allerson CR, Prakash TP, Berdeja A, Yu J, Lee S, Watt A, Gaus H, Bhat B, Swayze EE, Seth PP (2011) Synthesis, improved antisense activity and structural rationale for the divergent RNA affinities of 3′-fluoro hexitol nucleic acid (FHNA and Ara-FHNA) modified oligonucleotides. J Am Chem Soc 133:16642–16649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eremeeva E, Fikatas A, Margamuljana L, Abramov M, Schols D, Groaz E, Herdewijn P (2019) Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acids Res 47:4927–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124

    Article  CAS  PubMed  Google Scholar 

  • Fisher M, Abramov M, Van Aerschot A, Xu D, Juliano RL, Herdewijn P (2007) Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res 35:1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher M, Abramov M, Van Aerschot A, Rozenski J, Dixit V, Juliano RL, Herdewijn P (2009) Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. Eur J Pharmacol 606:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores MVC, Atkins D, Stewart TS, van Aerschot A, Herdewijn P (1999) Antimalarial antisense activity of hexitol nucleic acids. Parasitol Res 85:864–866

    Article  CAS  PubMed  Google Scholar 

  • Froeyen M, Wroblowski B, Esnouf R, De Winter H, Allart B, Lescrinier E, Herdewijn P (2000) Molecular-Dynamics Studies of Single-Stranded Hexitol, Altritol, Mannitol, and Ribose Nucleic Acids (HNA, MNA, ANA, and RNA, Resp.) and of the stability of HNA·RNA, ANA·RNA, and MNA·RNA duplexes. Helv Chim Acta 83:2153–2182

    Article  CAS  Google Scholar 

  • Gu P, Schepers G, Rozenski J, Van Aerschot A, Herdewijn P (2003) Base pairing properties of D- and L-cyclohexene nucleic acids (CeNA). Oligonucleotides 13:479–489

    Article  CAS  PubMed  Google Scholar 

  • Gu P, Griebel C, Van Aerschot A, Rozenski J, Busson R, Gais H-J, Herdewijn P (2004) Synthesis of enantiomeric-pure cyclohexenyl nucleoside building blocks for oligonucleotide synthesis. Tetrahedron 60:2111–2123

    Article  CAS  Google Scholar 

  • Hean J, Crowther C, Ely A, Ul Islam R, Barichievy S, Bloom K, Weinberg MS, van Otterlo WA, de Koning CB, Salazar F, Marion P, Roesch EB, Lemaitre M, Herdewijn P, Arbuthnot P (2010) Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artif DNA PNA XNA 1:17–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendrix C, Rosemeyer H, Verheggen I, Van Aerschot A, Seela F, Herdewijn P (1997a) 1′, 5′ -Anhydrohexitol oligonucleotides: synthesis, base pairing and recognition by regular oligodeoxyribonucleotides and oligoribonucleotides. Chem Eur J 3:110–120

    Article  CAS  Google Scholar 

  • Hendrix C, Rosemeyer H, De Bouvere B, Van Aerschot A, Seela F, Herdewijn P (1997b) 1′,5′-Anhydrohexitol oligonucleotides: hybridisation and strand displacement with oligoribonucleotides, interaction with RNase H and HIV reverse transcriptase. Chem Eur J 3:1513–1520

    Article  CAS  Google Scholar 

  • Herdewijn P (2010) Nucleic acids with a six-membered ‘carbohydrate’ mimic in the backbone. Chem Biodivers 7:1–59

    Article  CAS  PubMed  Google Scholar 

  • Herdewijn P, Marlière P (2009) Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chem Biodivers 6:791–808

    Article  CAS  PubMed  Google Scholar 

  • Hossain N, Wroblowski B, Van Aerschot A, Rozenski J, De Bruyn A, Herdewijn P (1998) Oligonucleotides composed of 2′-Deoxy-1′,5′-anhydro-d-mannitol nucleosides with a purine base moiety. J Organomet Chem 63:1574–1582

    Article  CAS  Google Scholar 

  • Kang H, Fisher MH, Xu D, Miyamoto YJ, Marchand A, Van Aerschot A, Herdewijn P, Juliano RL (2004) Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Res 32:4411–4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kestemont D, Renders M, Leonczak P, Abramov M, Schepers G, Pinheiro VB, Rozenski J, Herdewijn P (2018) XNA ligation using T4 DNA ligase in crowding conditions. Chem Commun 54:6408–6411

    Article  CAS  Google Scholar 

  • Kolb G, Reigadas S, Boiziau C, van Aerschot A, Arzumanov A, Gait MJ, Herdewijn P, Toulmé JJ (2005) Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA. Biochemistry 44:2926–2933

    Article  CAS  PubMed  Google Scholar 

  • Kozlov IA, Politis PK, Pitsch S, Herdewijn P, Orgel LE (1999a) A highly enantio-selective hexitol nucleic acid template for nonenzymatic oligoguanylate synthesis. J Am Chem Soc 121:1108–1109

    Article  CAS  PubMed  Google Scholar 

  • Kozlov IA, Politis PK, Van Aerschot A, Busson R, Herdewijn P, Orgel LE (1999b) Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure. J Am Chem Soc 121:2653–2656

    Article  CAS  PubMed  Google Scholar 

  • Kozlov IA, Zielinski M, Allart B, Kerremans L, Van Aerschot A, Busson R, Herdewijn P, Orgel LE (2000) Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides. Chemistry 6:151–155

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Degaonkar R, Guenther DC, Abramov M, Schepers G, Capobianco M, Jiang Y, Harp J, Kaittanis C, Janas MM, Castoreno A, Zlatev I, Schlegel MK, Herdewijn P, Egli M, Manoharan M (2020) Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Res 48:4028–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagoja IM, Marchand A, Van Aerschot A, Herdewijn P (2003) Synthesis of 1,5-Anhydrohexitol building blocks for oligonucleotide synthesis. Curr Protoc Nucleic Acid Chem 14:1.9.1–1.9.22

    Google Scholar 

  • Lavrik IN, Avdeeva ON, Dontsova OA, Froeyen M, Herdewijn PA (2001) Translational properties of mHNA, a messenger RNA containing anhydrohexitol nucleotides. Biochemistry 40:11777–11784

    Article  CAS  PubMed  Google Scholar 

  • Le BT, Chen S, Abramov M, Herdewijn P, Veedu RN (2016) Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro. Chem Commun 52:13467–13470

    Article  CAS  Google Scholar 

  • Lescrinier E, Esnouf R, Schraml J, Busson R, Heus H, Hilbers C, Herdewijn P (2000) Solution structure of a HNA-RNA hybrid. Chem Biol 7:719–731

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Przylas I, Strater N, Herdewijn P, Saenger W (2005) Reinforced HNA backbone hydration in the crystal structure of a decameric HNA/RNA hybrid. J Am Chem Soc 127:2937–2943

    Article  CAS  PubMed  Google Scholar 

  • Maiti M, Nauwelaerts K, Lescrinier E, Herdewijn P (2011) Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy. Chemistry 17:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Corrêa Jr IR, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marlière P, Patrouix J, Döring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R (2011) Chemical evolution of a bacterium’s genome. Angew Chem Int Ed Eng 50:7109–7114

    Article  Google Scholar 

  • Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG (2016a) Replacement of 2′-deoxycytidine by 2′-deoxycytidine analogues in the E. coli genome. J Am Chem Soc 138:14230–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG (2016b) Replacement of thymidine by a modified base in the Escherichia coli genome. J Am Chem Soc 138:7272–7275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migawa MT, Prakash TP, Vasquez G, Seth PP, Swayze EE (2013) Synthesis and biophysical properties of constrained d-Altritol nucleic acids (cANA). Org Lett 15:4316–4319

    Article  CAS  PubMed  Google Scholar 

  • Mutschler H, Taylor AI, Porebski BT, Lightowlers A, Houlihan G, Abramov M, Herdewijn P, Holliger P (2018) Random-sequence genetic oligomer pools display an innate potential for ligation and recombination. elife 7:e43022

    Article  PubMed  PubMed Central  Google Scholar 

  • Nauwelaerts K, Lescrinier E, Sclep G, Herdewijn P (2005) Cyclohexenyl nucleic acids: conformationally flexible oligonucleotides. Nucleic Acids Res 33:2452–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauwelaerts K, Fisher M, Froeyen M, Lescrinier E, Van Aerschot A, Xu D, DeLong R, Kang H, Juliano RL, Herdewijn P (2007) Structural characterization and biological evaluation of small interfering RNAs containing cyclohexenyl nucleosides. J Am Chem Soc 129:9340–9348

    Article  CAS  PubMed  Google Scholar 

  • Ng EW, Shima DT, Calias P, Cunningham Jr ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  PubMed  Google Scholar 

  • Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang B-T, Lu A, Zhang G (2021) Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces 13:9500–9519

    Article  CAS  PubMed  Google Scholar 

  • Ovaere M, Herdewijn P, Van Meervelt L (2011) The crystal structure of the CeNA:RNA hybrid ce(GCGTAGCG):r(CGCUACGC). Chemistry 17:7823–7830

    Article  CAS  PubMed  Google Scholar 

  • Ovaere M, Sponer J, Sponer JE, Herdewijn P, Van Meervelt L (2012) How does hydroxyl introduction influence the double helical structure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex. Nucleic Acids Res 40:7573–7583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezo V, Liu FW, Abramov M, Froeyen M, Herdewijn P, Marlière P (2013) Binary genetic cassettes for selecting XNA-Templated DNA synthesis in vivo. Angew Chem Int Ed 52:8139–8143

    Article  CAS  Google Scholar 

  • Pezo V, Schepers G, Lambertucci C, Marlière P, Herdewijn P (2014) Probing ambiguous base-pairs by genetic transformation with XNA templates. Chembiochem 15:2255–2258

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew S-Y, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pochet S, Kaminski PA, Van Aerschot A, Herdewijn P, Marlière P (2003) Replication of hexitol oligonucleotides as a prelude to the propagation of a third type of nucleic acid in vivo. C R Biol 326:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Renders M, Dumbre S, Abramov M, Kestemont D, Margamuljana L, Largy E, Cozens C, Vandenameele J, Pinheiro VB, Toye D, Frère J-M, Herdewijn P (2019) Kinetic analysis of N-alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases. Nucleic Acids Res 47:2160–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rietmeyer L, Li De La Sierra-Gallay I, Schepers G, Dorchêne D, Iannazzo L, Patin D, Touzé T, van Tilbeurgh H, Herdewijn P, Ethève-Quelquejeu M, Fonvielle M (2022) Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis. Nucleic Acids Res 50:11415–11425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robeyns K, Herdewijn P, Van Meervelt L (2008a) Structure of the fully modified left-handed cyclohexene nucleic acid sequence GTGTACAC. J Am Chem Soc 130:1979–1984

    Article  CAS  PubMed  Google Scholar 

  • Robeyns K, Herdewijn P, Van Meervelt L (2008b) Influence of the incorporation of a cyclohexenyl nucleic acid (CeNA) residue onto the sequence d(CGCGAATTCGCG). Nucleic Acids Res 36:1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Robeyns K, Herdewijn P, Van Meervelt L (2010) Direct observation of two cyclohexenyl (CeNA) ring conformations in duplex DNA. Artif DNA PNA XNA 1:2–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohner E, Yang R, Foo KS, Goedel A, Chien KR (2022) Unlocking the promise of mRNA therapeutics. Nat Biotechnol 40:1586–1600

    Article  CAS  PubMed  Google Scholar 

  • Samson C, Legrand P, Tekpinar M, Rozenski J, Abramov M, Holliger P, Pinheiro VB, Herdewijn P, Delarue M (2020) Structural studies of HNA substrate specificity in mutants of an archaeal DNA polymerase obtained by directed evolution. Biomol Ther 10:1647

    CAS  Google Scholar 

  • Seth PP, Yu J, Jazayeri A, Pallan PS, Allerson CR, Østergaard ME, Liu F, Herdewijn P, Egli M, Swayze EE (2012) Synthesis and antisense properties of fluoro cyclohexenyl nucleic acid (F-CeNA), a nuclease stable mimic of 2′-Fluoro RNA. J Organomet Chem 77:5074–5085

    Article  CAS  Google Scholar 

  • Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S, Cozens C, Weeks KM, Herdewijn P, Holliger P (2015) Catalysts from synthetic genetic polymers. Nature 518:427–430

    Article  CAS  PubMed  Google Scholar 

  • Taylor AI, Beuron F, Peak-Chew S-Y, Morris EP, Herdewijn P, Holliger P (2016) Nanostructures from synthetic genetic polymers. Chembiochem 17:1107–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Aerschot A, Meldgaard M, Schepers G, Volders F, Rozenski J, Busson R, Herdewijn P (2001) Improved hybridisation potential of oligonucleotides comprising O-methylated anhydrohexitol nucleoside congeners. Nucleic Acids Res 29:4187–4194

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandermeeren M, Préveral S, Janssens S, Geysen J, Saison-Behmoaras E, Van Aerschot A, Herdewijn P (2000) Biological activity of hexitol nucleic acids targeted at Ha-ras and intracellular adhesion molecule-1 mRNA. Biochem Pharmacol 59:655–663

    Article  CAS  PubMed  Google Scholar 

  • Vanmeert M, Razzokov J, Mirza MU, Weeks SD, Schepers G, Bogaerts A, Rozenski J, Froeyen M, Herdewijn P, Pinheiro VB, Lescrinier E (2019) Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Res 47:7130–7142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeure B, Lescrinier E, Wang J, Herdewijn P (2001) RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA). Nucleic Acids Res 29:4941–4947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheggen I, Vanaerschot A, Toppet S, Snoeck R, Janssen G, Balzarini J, Declercq E, Herdewijn P (1993) SYNTHESIS AND ANTIHERPES VIRUS ACTIVITY OF 1,5-ANHYDROHEXITOL NUCLEOSIDES. J Med Chem 36:2033–2040

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Verbeure B, Luyten I, Lescrinier E, Froeyen M, Hendrix C, Rosemeyer H, Seela F, Van Aerschot A, Herdewijn P (2000) Cyclohexene nucleic acids (CeNA): serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA. J Am Chem Soc 122:8595–8602

    Article  CAS  Google Scholar 

  • Wang J, Morral J, Hendrix C, Herdewijn P (2001) A straightforward stereoselective synthesis of d- and l-5-Hydroxy-4-hydroxymethyl-2-cyclohexenylguanine. J Organomet Chem 66:8478–8482

    Article  CAS  Google Scholar 

  • Winter HD, Lescrinier E, Aerschot AV, Herdewijn P (1998) Molecular dynamics simulation to investigate differences in minor groove hydration of HNA/RNA hybrids as compared to HNA/DNA complexes. J Am Chem Soc 120:5381–5394

    Article  Google Scholar 

  • Zhou J, Abramov M, Liu F, Amrane S, Bourdoncle A, Herdewijn P, Mergny J-L (2013) Effects of six-membered carbohydrate rings on structure, stability, and kinetics of G-Quadruplexes. Chem Eur J 19:14719–14725

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhu L, Wang X, Jin H (2022) RNA-based therapeutics: an overview and prospectus. Cell Death Dis 13:644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabetta Groaz or Piet Herdewijn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Groaz, E., Herdewijn, P. (2023). Hexitol Nucleic Acid (HNA): From Chemical Design to Functional Genetic Polymer. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_15

Download citation

Publish with us

Policies and ethics