Skip to main content

Structures and Catalytic Activities of Complexes Between Heme and DNA

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Both heme and G-quadruplex DNA are ubiquitous in living systems and play a variety of vital roles in cellular functions. Hence elucidation of the interaction between them at the atomic level is expected to provide valuable information for revealing the molecular mechanism responsible for the regulation of diverse biological processes through their interaction. Heme binds selectively to the 3′-terminal G-quartet of a parallel G-quadruplex DNA to form a stable complex, which exhibits not only peroxidase activity, but also various spectroscopic and functional properties remarkably similar to those of hemoproteins such as myoglobin. Mechanistic studies on the peroxidation cycle of the complex indicated that its catalytic cycle involves the iron(IV)oxo porphyrin π-cation radical intermediate known as compound I formed through heterolytic O-O bond cleavage of an Fe3+-bound hydroperoxo ligand (Fe3+-OOH) in compound 0, like those of peroxidases such as horseradish peroxidase (HRP), and that the formation of compound I in the complex is promoted by mechanisms that are reminiscent of the “push” and “pull” mechanisms in the catalytic cycle of HRP. These findings allow not only a deeper understanding of the functional properties of heme bound to a G-quartet, but also an insight as to control the heme reactivity of the complex. In addition, since heme is believed to be an ancient compound, the catalytic activities of complexes between heme and G-quadruplex nucleic acids could possibly help us to conceptualize redox-catalyzing ribozymes in a primordial “RNA world.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RJ, Medforth CJ (1988) The NMR spectra of the porphyrins. 36 -Ring currents in octaethylporphyrin, meso-tetraphenylporphyrin and phthalocyanine complexes. Magn Reson Chem 26:803–812

    Google Scholar 

  • Araki H et al (2021) A cationic copolymer as a cocatalyst for a peroxidase-mimicking heme-DNAzyme. Biomater Sci 9:6142–6152

    Google Scholar 

  • Bertini I et al (2016) NMR of paramagnetic molecules; Applications to metallobiomolecules and models.2nd edn. Elsevier Science

    Google Scholar 

  • Brooks TA et al (2010) Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277:3459–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton MJ et al (2016) A heme-binding domain controls regulation of ATP-dependent potassium channels. Proc Natl Acad Sci U S A 113:3785–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canesin G et al (2020) Scavenging of labile heme by hemopexin is a key checkpoint in cancer growth and metastases. Cell Rep. https://doi.org/10.1016/j.celrep.2020.108181

  • Chang CK et al (1984) Kinetic study of CO and O2 binding to horse heart myoglobin reconstituted with synthetic hemes lacking methyl and vinyl side chains. Arch Biochem Biophys 231:366–371

    Article  CAS  PubMed  Google Scholar 

  • Franzen S et al (2002) Proximal ligand motions in H93G myoglobin. Eur J Biochem 269:4879–4886

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Article  Google Scholar 

  • González V, Hurley LH (2010) The c-MYC NHE III1: function and regulation. Annu Rev Pharmacol Toxicol 50:111–129

    Article  PubMed  Google Scholar 

  • Gray LT et al (2019) G-quadruplexes sequester free heme in living cells. Cell Chem Biol 26:1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Guiset Miserachs H et al (2016) Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes. J Biol Inorg Chem 21:975–986

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara S et al (2021) Effects of heme electronic structure and local heme environment on catalytic activity of a peroxidase-mimicking heme-DNAzyme. Inorg Chem 60:11206–11213

    Article  CAS  PubMed  Google Scholar 

  • Hong S et al (2014) Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. Nat Commun 5:5440–5446

    Google Scholar 

  • Ikeda-Saito M et al (1992) Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J Biol Chem 267:22843–22852

    Article  CAS  PubMed  Google Scholar 

  • Kaasik K, Lee CC (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471

    Article  CAS  PubMed  Google Scholar 

  • Kato Y et al (2005) Dynamics and thermodynamics of dimerization of parallel G-quadruplexed DNA formed from d(TTAGn) (n = 3−5). J Am Chem Soc 127:9980–9981

    Article  CAS  PubMed  Google Scholar 

  • La Mar GN et al (1978) Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins. Proc Natl Acad Sci U S A 75:5755–5759

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikuma T et al (2003) Coordination complex between haemin and parallel-quadruplexes d(TTAGGG). Chem Commun 1708–1709

    Google Scholar 

  • Miyoshi D et al (2001) Effect of divalent cations on antiparallel G-quartet structure of d(G4T4G4). FEBS Lett 496:128–133

    Article  CAS  PubMed  Google Scholar 

  • Morishima I, Iizuka T (1974) Nuclear magnetic resonance studies of hemoproteins. Unusual temperature dependence of hyperfine shifs ans spin equilibrium in ferric myoglobin and hemoglobin derivatives. J Am Chem Soc 96:5279–5283

    Article  CAS  PubMed  Google Scholar 

  • Nam D et al (2020) Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr). J Biol Chem 295:11316–11325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitani Y et al (2019) Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2019.110726

  • Ohyama T et al (2006) Exogenous ligand binding property of a heme–DNA coordination complex. Chem Lett 35:126–127

    Article  CAS  Google Scholar 

  • Okamoto C et al (2021) Structural and functional characterization of complexes between heme and dimeric parallel G-quadruplex DNAs. J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2020.111336

  • Pasternack RF et al (1983) Interactions of porphyrins with nucleic acids. Biochemistry 22:2406–2414

    Article  CAS  PubMed  Google Scholar 

  • Phan AT, Patel DJ (2003) Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 125:15021–15027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon LC et al (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 133:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Sabater L et al (2015) Cobalt(III)porphyin to target G-quadruplex DNA. Dalton Trans 44:3701–3707

    Article  CAS  PubMed  Google Scholar 

  • Saito K et al (2012a) Structural characterization of a carbon monoxide adduct of a heme-DNA complex. J Biol Inorg Chem 17:437–445

    Article  CAS  PubMed  Google Scholar 

  • Saito K et al (2012b) Interaction between the heme and a G-quartet in a heme-DNA complex. Inorg Chem 51:8168–8176

    Article  CAS  PubMed  Google Scholar 

  • Sen D, Geyer CR (1998) DNA enzymes. Curr Opin Chem Biol 2:680–687

    Article  CAS  PubMed  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  CAS  PubMed  Google Scholar 

  • Sen D, Poon LC (2011) RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol 46:478–492

    Article  CAS  PubMed  Google Scholar 

  • Shibata T et al (2010) Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid−alkaline transition in metmyoglobin. J Am Chem Soc 132:6091–6098

    Article  CAS  PubMed  Google Scholar 

  • Shibata T et al (2017) Characterization of the interaction between heme and a parallel G-quadruplex DNA formed from d(TTGAGG). Biochim Biophys Acta 1861:1264–1270

    Article  CAS  Google Scholar 

  • Shimizu H et al (2015) Characterization of the interaction between heme and a parallel G-quadruplex DNA formed from d(TTAGGGT). Bull Chem Soc Jpn 88:644–652

    Article  CAS  Google Scholar 

  • Shinomiya R et al (2018) Characterization of catalytic activities and heme coordination structures of heme-DNA complexes composed of some chemically modified hemes and an all parallel-stranded tetrameric G-quadruplex DNA formed from d(TTAGGG). Biochemistry 57:5930–5937

    Article  CAS  PubMed  Google Scholar 

  • Shumayrikh N et al (2015) Heme activation by DNA: isoguanine pentaplexes, but not quadruplexes, bind heme and enhance its oxidative activity. Nucleic Acids Res 43:4191–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sono M et al (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  • Spiro TG, Wasbotten IH (2005) CO as a vibrational probe of heme protein active sites. J Inorg Biochem 99:34–44

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y et al (2014) Structural characterization of imidazole adducts of heme-DNA complexes. J Porphyrins Phthalocyanines 18:741–751

    Article  CAS  Google Scholar 

  • Toi H et al (1985) Paramagnetic 19F n.m.r. spectra of iron(III) porphyrins substituted with CF3 groups and reconstituted myoglobin. J Chem Soc Chem Commun 24:1791–1792

    Article  Google Scholar 

  • Travascio P et al (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Patel DJ (1992) Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31:8112–8119

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y (1998) NMR study of active sites in paramagnetic haemoproteins. Annu Rep NMR Spectrosc 36:1–77

    Google Scholar 

  • Yamamoto Y et al (2015) Characterization of heme-DNA complexes composed of some chemically modified hemes and parallel G-quadruplex DNAs. Biochemistry 54:7168–7177

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y et al (2018) Structures and catalytic activities of complexes between heme and all parallel-stranded monomeric G-quadruplex DNAs. Biochemistry 57:5938–5948

    Article  CAS  PubMed  Google Scholar 

  • Yarus M (2002) Primordial genetics: phenotype of the ribocyte. Annu Rev Genet 36:125–151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Yamamoto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamamoto, Y., Momotake, A. (2023). Structures and Catalytic Activities of Complexes Between Heme and DNA. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_12

Download citation

Publish with us

Policies and ethics