Skip to main content

In Cell 19F NMR for G-Quadruplex

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

G-quadruplexes are four-stranded DNA/RNA structures formed by G-rich sequences. Their structure and function in basic genetic processes are an active area of research in telomere, gene regulation, and functional genomics research. Investigation of G-quadruplex structures associated with biological events is therefore essential to understanding the functions of these molecules. Antibodies and some small molecules have been used to investigate DNA G-quadruplex structures in living cells. However, these methods cannot distinguish the detailed topologies of G-quadruplexes. Very recently, it was demonstrated that 19F NMR spectroscopy can distinguish different nucleic acid structures by the corresponding 19F signal. The simplicity and sensitivity of 19F NMR approach can be used to directly observe DNA G-quadruplex, RNA G-quadruplex, Hybrid DNA/RNA G-quadruplex in vitro and in living cells and quantitatively characterize the thermodynamic properties of the G-quadruplexes. The finding provides new insight into the structural behavior of G-quadruplex in living cells. These results open new avenues for the investigation of G-quadruplex structures in vitro and in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TD, Rutherford SA, Murray S et al (2007) A protocol for isolating Xenopus oocyte nuclear envelope for visualization and characterization by scanning electron microscopy (SEM) or transmission electron microscopy (TEM). Nat Protoc 2:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Ambrus A, Chen D, Dai J et al (2006) Human telomeric sequence forms a hybrid-type Intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balk B, Maicher A, Dees M et al (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Bao HL et al (2017) Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 45:5501–5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biffi G, Tannahill D, McCafferty J et al (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Viel S, Ziarelli F et al (2013) 19F NMR: a valuable tool for studying biological events. Chem Soc Rev 42:7971–7982

    Google Scholar 

  • Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40:5867–5892

    Article  CAS  PubMed  Google Scholar 

  • Collie GW, Parkinson GN, Neidle S et al (2010) Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. J Am Chem Soc 132:9328–9334

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Carver M, Punchihewa C et al (2007) Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Tang Y, Kwok CK et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700

    Article  CAS  PubMed  Google Scholar 

  • Dzatko S, Krafcikova M, Hansel-Hertsch R et al (2018) Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed 57:2165–2169

    Article  CAS  Google Scholar 

  • Haeusler AR, Donnelly CJ, Periz G et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200

    Google Scholar 

  • Halley-Stott RP, Pasqu V, Astrand C et al (2010) Mammalian nuclear transplantation to Germinal Vesicle stage Xenopus oocytes-a method for quantitative transcriptional reprogramming. Methods 51:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel R et al (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761–15768

    Article  PubMed  Google Scholar 

  • Hansel R, Lohr F, Foldynova-Trantirkova S et al (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions Nucl Acids Res 39:5768–5775

    PubMed Central  Google Scholar 

  • Hansel R, Lohr F, Trantirek L et al (2013) High-resolution insight into G-overhang architecture. J Am Chem Soc 135:2816–2824

    Article  PubMed  Google Scholar 

  • Hansel R, Luh LM, Corbeski I et al (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed 53:10300–10314

    Article  Google Scholar 

  • Hu XX, Wang SQ, Gan SQ et al (2021) A small ligand that selectively binds to the G-quadruplex at the human vascular endothelial growth factor internal ribosomal entry site and represses the translation. Front Chem 9:781198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Vale RD (2017) RNA phase transitions in repeat expansion disorders. Nature 546:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107

    Article  CAS  PubMed  Google Scholar 

  • Lim KW, Amrane S, Bouaziz S et al (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 131:4301–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luu KN, Phan AT, Kuryavyi V et al (2006) Structure of the human telomere in K+ Solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martadinata H, Phan AT (2009) Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc 131:2570–2578

    Article  CAS  PubMed  Google Scholar 

  • Martadinata H, Phan AT (2013) Structure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K+ solution. Biochemistry 52:2176–2183

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758

    Article  CAS  PubMed  Google Scholar 

  • Ogino S, Kubo S, Umemoto R et al (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin. Streptolysin O J Am Chem Soc 131:10834–10835

    Article  CAS  PubMed  Google Scholar 

  • Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  • Phan AT, Patel DJ (2003) Two-repeat human telomeric d(TAGGGTTAGGGT) sequence forms interconverting parallel and antiparallel G-quadruplexes in solution: distinct topologies, thermodynamic properties, and folding/unfolding kinetics. J Am Chem Soc 125:15021–15027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43:8627–8637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai T et al (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36:179–188

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara D et al (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105

    Article  CAS  PubMed  Google Scholar 

  • Salgado GF, Cazenave C, Kerkour A et al (2015) G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci 6:3314–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  CAS  PubMed  Google Scholar 

  • Selenko P, Serber Z, Gadea B et al (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103:11904–11909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serber Z et al (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701–2709

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AL, Singh K, Zhong Y et al (2014) RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao CD, Ishizuka T, Zhu XQ et al (2017) Unusual topological RNA architecture with an eight-stranded helical fragment containing A-, G-, and U-Tetrads. J Am Chem Soc 139:2565–2568

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2011) Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 40:2719–2740

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2018) Recent progress in human telomere RNA structure and function. Bioorg Med Chem Lett 28:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg Med Chem 14:5584–5591

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Kaminaga K, Komiyama M (2008) G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J Am Chem Soc 130:11179–11184

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Suzuki Y, Komiyama M (2009) Click chemistry for the identification of G-quadruplex structures: discovery of a DNA-RNA G-quadruplex. Angew Chem Int Ed 48:3281–3284

    Article  CAS  Google Scholar 

  • Xu Y, Ishizuka T, Kimura T et al (2010) A U-tetrad stabilizes human telomeric RNA G-quadruplexstructure. J Am Chem Soc 132:7231–7233

    Google Scholar 

  • Xu Y, Suzuki Y, Ito K et al (2010) Telomeric repeat-containing RNA structure in living cells. Proc Natl Acad Sci USA 107:14579–14584

    Google Scholar 

  • Xu Y, Ishizuka T, Yang J et al (2012) Oligonucleotide models of telomeric DNA and RNA form a Hybrid G-quadruplex structure as a potential. J Biol Chem 287:41787–41796

    Google Scholar 

  • Yamaoki Y, Kiyoishi A, Miyake M et al (2018) The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys Chem Chem Phys 20:2982–2985

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Liu X, Xu G et al (2015) Direct observation of Ca2+-induced calmodulin conformational transitions in intact Xenopus laevis oocytes by 19F NMR spectroscopy. Angew Chem Int Ed 54:5328–5330

    Article  CAS  Google Scholar 

  • Zhang Z, Dai J, Veliath E et al (2010) Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res 38:1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Sun H, Wang L et al (2018) Real-time monitoring of DNA G-quadruplexes in living cells with a small-molecule fluorescent probe. Nucleic Acids Res 46:7522–7532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, Y. (2023). In Cell 19F NMR for G-Quadruplex. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_11

Download citation

Publish with us

Policies and ethics