Skip to main content

Evolution of Intramedullary Nails for Long Bone Fractures in the Lower Limb

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Intramedullary nails have been the most commonly used and more stable implants especially in the lower limb long bone fractures. It is paramount to know the biomechanical aspects of the implant for a good functional outcome. In this chapter, we discuss the history, various biomechanical properties of intramedullary nails, and the know-how of modern implants. Any nail, however, should not only be biocompatible but should overcome all stresses at the fracture site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bong MR, Koval KJ, Egol KA. The history of intramedullary nailing. Bull NYU Hosp Jt Dis. 2006;64:94–7.

    PubMed  Google Scholar 

  2. Knothe U, Tate MLK, Perren SM. 300 years of intramedullary fixation – from Aztec practice to standard treatment modality. Eur J Trauma. 2000;26:217–25.

    Article  Google Scholar 

  3. Bartonı’cˇek J. Early history of operative treatment of fractures. Arch Orthop Trauma Surg. 2010;130:1385–96.

    Article  Google Scholar 

  4. Nelson FRT, Blauvelt CT. A manual of orthopaedic terminology. 8th ed. Philadelphia: Elsevier Health Sciences; 2015.

    Google Scholar 

  5. Young S. Orthopaedic trauma surgery in low-income countries: follow-up, infections and HIV. Acta OrthopScandSuppl. 2014;85:1–35.

    Article  Google Scholar 

  6. King R. Ku¨ntscher nailing of the tibia – a new tibial jig. Injury. 1980;11:256–7.

    Article  CAS  PubMed  Google Scholar 

  7. Groves EWH. Ununited fractures, with special reference to gunshot injuries and the use of bone grafting. Br J Surg. 1918;6:203–47.

    Article  Google Scholar 

  8. Fischer AW, Maatz R. Weitere Erfahrungenmit der MarknagelungnachKu¨ntscher. Arch KlinChir. 1942;203:531.

    Google Scholar 

  9. Modny MT, Bambara J. The perforated cruciate intramedullary nail: preliminary report of its use in geriatric patients. J Am Geriatr Soc. 1953;1:579–88.

    Article  CAS  PubMed  Google Scholar 

  10. Smith J, Greaves I, Porter K. Oxford desk reference – major trauma. New York: Oxford University Press; 2010.

    Book  Google Scholar 

  11. Gimeno MS, Albareda JA, Vernet JMC, et al. Biomechanical study of the Grosse-Kempf femoral nail. Int Orthop. 1997;21:115–8.

    Article  PubMed Central  Google Scholar 

  12. Furman BR, Saha S. Torsional testing of bone. In: An YH, Draughn RA, editors. Mechanical testing of bone and the bone-implant interface. Boca Raton: CRC Press; 2000. p. 219–39.

    Google Scholar 

  13. Stedtfeld HW. Rationale of intramedullary nailing. In: Rommens PM, Hessmann MH, editors. Intramedullary nailing: a comprehensive guide. 1st ed. London: Springer; 2015. p. 13–25.

    Chapter  Google Scholar 

  14. DeCoster T. A brief history of medullary nailing, New Mexico perspective. UNMO Orthop Res J. 2012;1:46–54.

    Google Scholar 

  15. Wong MK. Intramedullary techniques. In: Porteous M, Bäuerle S, editors. Techniques and principles for the operating room. Davos Platz: Thieme; 2010. p. 157–61.

    Google Scholar 

  16. Letechipia J, Alessi A, Rodriguez G, et al. Design and preliminary testing of an active intramedullary nail. Clin Transl Invest. 2014;66:70–8.

    Google Scholar 

  17. Da GZ, Wang TM, Liu Y, et al. Surgical treatment of tibial and femoral fractures with TiNi shape-memory alloy interlocking intramedullary nails. In: Proceedings of the international conference on shape memory and superelastic technologies and shape memory materials, Kunming, China, 2–6 September 2001, p. 37–40.

    Google Scholar 

  18. Kojic N, Rangger C, Özgün C, et al. Carbon-fibre-reinforced PEEK radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study. Injury. 2017;48(S5):S8–S11.

    Article  PubMed  Google Scholar 

  19. Lewis D, Lutton C, Wilson LJ, et al. Low cost polymer intramedullary nails for fracture fixation: a biomechanical study in a porcine femur model. Arch Orthop Trauma Surg. 2009;129:817–22.

    Article  CAS  PubMed  Google Scholar 

  20. Li G, Zhang L, Wang L, et al. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study. Acta Biomater. 2018;65:486–500.

    Article  CAS  PubMed  Google Scholar 

  21. Garlock NA, Donovan J, LeCronier DJ, et al. A modified intramedullary nail interlocking design yields improved stability for fatigue cycling in a canine femur fracture model. Proc IMechE Part H J Eng Med. 2012;226:469–76.

    Article  Google Scholar 

  22. Gueorguiev B, Wahnert D, Albrecht D, Ockert B, Windolf M, Schwieger K. Effect on dynamic mechanical stability and interfragmentary movement of angle-stable locking of intramedullary nails in unstable distal tibia fractures: a biomechanical study. J TRAUMA-Injury Infect Critical Care. 2011;70(2):358–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shetty, M.S., Yogesh, K. (2023). Evolution of Intramedullary Nails for Long Bone Fractures in the Lower Limb. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics