Skip to main content

Implantology of Fractures of the Foot

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 16 Accesses

Abstract

This review looks at orthopaedic implants used for fractures of the foot. A number of developments in the type of implants, biomaterials, and their evolution are described together with their scientific principles. Progress in imaging techniques such as fluoroscopy, CT scans, and MRI have allowed possible closed visual access to regions which previously required an open surgical procedure. The AO group has had an important role in the development of lag screws, tension band wires and low contact dynamic compression plates (LCDCP), and the less invasive stabilization system (LISS) plate.

Titanium and titanium alloys have improved screw strength, allowed smaller size and lower profile plates with the option of locking and non-locking screws. Fractures previously thought too difficult to fix with older implants are now possible to stabilize with these newer implants.

The foot and ankle is a multi-segmental functional unit which has to withstand great mechanical forces of compression and torsion. It must provide a rigid structure that allows weight bearing and an efficient lever arm for propulsion. Implants used for fracture fixation therefore need to withstand great forces while bone healing occurs and avoid fatigue failure with fracture displacement, malunion, and non-union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shibuya N, Davis ML, Jupiter DC. Epidemiology of foot and ankle fractures in the United States: an analysis of the National Trauma Data Bank (2007 to 2011). J Foot Ankle Surg. 2014;53(5):606–8.

    Article  PubMed  Google Scholar 

  2. Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37(8):691–7.

    Article  PubMed  Google Scholar 

  3. Rasmussen CG, Jorgensen SB, Larsen P, Horodyskyy M, Kjaer IL, Elsoe R. Population-based incidence and epidemiology of 5912 foot fractures. Foot Ankle Surg. 2021;27(2):181–5.

    Article  PubMed  Google Scholar 

  4. Rammelt S, Zwipp H. Calcaneus fractures: facts, controversies and recent developments. Injury. 2004;35(5):443–61.

    Article  PubMed  Google Scholar 

  5. Brauer CA, Manns BJ, Ko M, Donaldson C, Buckley R. An economic evaluation of operative compared with nonoperative management of displaced intra-articular calcaneal fractures. J Bone Joint Surg Am. 2005;87(12):2741–9.

    Article  PubMed  Google Scholar 

  6. Mitchell MJ, McKinley JC, Robinson CM. The epidemiology of calcaneal fractures. Foot (Edinb). 2009;19(4):197–200.

    Article  CAS  PubMed  Google Scholar 

  7. van Tetering EA, Buckley RE. Functional outcome (SF-36) of patients with displaced calcaneal fractures compared to SF-36 normative data. Foot Ankle Int. 2004;25(10):733–8.

    Article  PubMed  Google Scholar 

  8. Buckley R, Tough S, McCormack R, Pate G, Leighton R, Petrie D, et al. Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am. 2002;84(10):1733–44.

    Article  PubMed  Google Scholar 

  9. Gavlik JM, Rammelt S, Zwipp H. Percutaneous, arthroscopically-assisted osteosynthesis of calcaneus fractures. Arch Orthop Trauma Surg. 2002;122(8):424–8.

    Article  PubMed  Google Scholar 

  10. Nelson JD, McIff TE, Moodie PG, Iverson JL, Horton GA. Biomechanical stability of intramedullary technique for fixation of joint depressed calcaneus fracture. Foot Ankle Int. 2010;31(3):229–35.

    Article  PubMed  Google Scholar 

  11. Schepers T. The sinus tarsi approach in displaced intra-articular calcaneal fractures: a systematic review. Int Orthop. 2011;35(5):697–703.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zwipp H, Rammelt S, Barthel S. Calcaneal fractures – the most frequent tarsal fractures. Ther Umsch. 2004;61(7):435–50.

    Article  CAS  PubMed  Google Scholar 

  13. Poigenfürst J, Buch J. Treatment of severe fractures of the calcaneus by reposition and percutaneous bore wire fixation. Unfallchirurg. 1988;91(11):493–501.

    PubMed  Google Scholar 

  14. Wu J, Zhou F, Yang L, Tan J. Percutaneous reduction and fixation with Kirschner wires versus open reduction internal fixation for the management of calcaneal fractures: a meta-analysis. Sci Rep. 2016;6:30480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Squires B, Allen PE, Livingstone J, Atkins RM. Fractures of the tuberosity of the calcaneus. J Bone Joint Surg Br. 2001;83(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  16. Khazen GE, Wilson AN, Ashfaq S, Parks BG, Schon LC. Fixation of calcaneal avulsion fractures using screws with and without suture anchors: a biomechanical investigation. Foot Ankle Int. 2007;28(11):1183–6.

    Article  PubMed  Google Scholar 

  17. Xu D, Lou W, Li M, Chen J. The treatment of avulsion fracture of the calcaneal tuberosity: a new technique of 180-degree annular internal fixation. Clin Interv Aging. 2021;16:275–80.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cotton FJ. Os Calcis fracture. Ann Surg. 1916;64(4):480–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo X, Li Q, He S, He S. Operative versus nonoperative treatment for displaced intra-articular calcaneal fractures: a meta-analysis of randomized controlled trials. J Foot Ankle Surg. 2016;55(4):821–8.

    Article  PubMed  Google Scholar 

  20. Mehta CR, An VVG, Phan K, Sivakumar B, Kanawati AJ, Suthersan M. Extensile lateral versus sinus tarsi approach for displaced, intra-articular calcaneal fractures: a meta-analysis. J Orthop Surg Res. 2018;13(1):243.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Redfern DJ, Oliveira ML, Campbell JT, Belkoff SM. A biomechanical comparison of locking and nonlocking plates for the fixation of calcaneal fractures. Foot Ankle Int. 2006;27(3):196–201.

    Article  PubMed  Google Scholar 

  22. Dingemans SA, Sintenie FW, de Jong VM, Luitse JSK, Schepers T. Fixation methods for calcaneus fractures: a systematic review of biomechanical studies using Cadaver specimens. J Foot Ankle Surg. 2018;57(1):116–22.

    Article  PubMed  Google Scholar 

  23. JanBartoníček S. Carl Gussenbauer and the history of nailing for calcaneal fractures. Fuß & Sprunggelenk. 2020;18(3):239–43.

    Article  Google Scholar 

  24. Amlang M, Zwipp H, Pompach M, Rammelt S. Interlocking nail fixation for the treatment of displaced intra-articular calcaneal fractures. JBJS Essent Surg Tech. 2017;7(4):e33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reinhardt S, Martin H, Ulmar B, Döbele S, Zwipp H, Rammelt S, et al. Interlocking nailing versus interlocking plating in intra-articular calcaneal fractures: a biomechanical study. Foot Ankle Int. 2016;37(8):891–7.

    Article  PubMed  Google Scholar 

  26. Gavlik JM, Rammelt S, Zwipp H. The use of subtalar arthroscopy in open reduction and internal fixation of intra-articular calcaneal fractures. Injury. 2002;33(1):63–71.

    Article  PubMed  Google Scholar 

  27. Adelaar RS, Madrian JR. Avascular necrosis of the talus. Orthop Clin North Am. 2004;35(3):383–95, xi

    Article  PubMed  Google Scholar 

  28. Szyszkowitz R, Reschauer R, Seggl W. Eighty-five talus fractures treated by ORIF with five to eight years of follow-up study of 69 patients. Clin Orthop Relat Res. 1985;199:97–107.

    Article  Google Scholar 

  29. Swanson TV, Bray TJ, Holmes GB Jr. Fractures of the Talar neck. A mechanical study of fixation. J Bone Joint Surg Am. 1992;74(4):544–51.

    Article  CAS  PubMed  Google Scholar 

  30. Beltran MJ, Mitchell PM, Collinge CA. Posterior to anteriorly directed screws for management of Talar neck fractures. Foot Ankle Int. 2016;37(10):1130–6.

    Article  PubMed  Google Scholar 

  31. Capelle JH, Couch CG, Wells KM, Morris RP, Buford WL Jr, Merriman DJ, et al. Fixation strength of anteriorly inserted headless screws for Talar neck fractures. Foot Ankle Int. 2013;34(7):1012–6.

    Article  PubMed  Google Scholar 

  32. Charlson MD, Parks BG, Weber TG, Guyton GP. Comparison of plate and screw fixation and screw fixation alone in a comminuted Talar neck fracture model. Foot Ankle Int. 2006;27(5):340–3.

    Article  PubMed  Google Scholar 

  33. Heather A, Vallier SGR, Boyd AJ, Moore TA. A new look at the Hawkins classification for talar neck fractures: which features of injury and treatment are predictive of osteonecrosis? JBJS. 2014;5(96):192–7.

    Google Scholar 

  34. Schwartz AM, Runge WO, Hsu AR, Bariteau JT. Fractures of the talus: current concepts. Foot Ankle Orthopaedics. 2020;5(1):1–10.

    Google Scholar 

  35. Mallon WJ, Wombwell JH, Nunley JA. Intra-articular talar fractures: repair using the Herbert bone screw. Foot Ankle Jorunal. 1989;10(2):88–92.

    Article  CAS  Google Scholar 

  36. Rosenbaum AJ, Uhl RL, DiPreta JA. Acute fractures of the tarsal navicular. Orthopedics. 2014;37(8):541–6.

    Article  PubMed  Google Scholar 

  37. Schmid T, Krause F, Gebel P, Weber M. Operative treatment of acute fractures of the tarsal navicular body: midterm results with a new classification. Foot Ankle Int. 2016;37(5):501–7.

    Article  PubMed  Google Scholar 

  38. Tarek Boutefnouchet BB, Backshayesh P, Ali SA. Metatarsal fractures: a review and current concepts. Trauma. 2014;16(3):147–63.

    Article  Google Scholar 

  39. Jones RI. Fracture of the base of the fifth metatarsal bone by indirect violence. Ann Surg. 1902;35(6):697–700. 2

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Husain ZS, DeFronzo DJ. Relative stability of tension band versus two-cortex screw fixation for treating fifth metatarsal base avulsion fractures. J Foot Ankle Surg. 2000;39(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  41. O’Malley M, DeSandis B, Allen A, Levitsky M, O’Malley Q, Williams R. Operative treatment of fifth metatarsal Jones fractures (zones II and III) in the NBA. Foot Ankle Int. 2016;37(5):488–500.

    Article  PubMed  Google Scholar 

  42. Huh J, Glisson RR, Matsumoto T, Easley ME. Biomechanical comparison of intramedullary screw versus low-profile plate fixation of a Jones fracture. Foot Ankle Int. 2016;37(4):411–8.

    Article  PubMed  Google Scholar 

  43. Bean BA, Smyth NA, Abbasi P, Parks BG, Hembree WC. Biomechanical comparison of hook plate vs headless compression screw fixation of large fifth Metatarsal Base avulsion fractures. Foot Ankle Int. 2021;42(1):89–95.

    Article  PubMed  Google Scholar 

  44. Hu S-J, Chang S-M, Li X-H, Yu G-R. Outcome comparison of Lisfranc injuries treated through dorsal plate fixation versus screw fixation. Acta Ortop Bras. 2014;22(6):315–20.

    Google Scholar 

  45. Lee CA, Birkedal JP, Dickerson EA, Vieta PA Jr, Webb LX, Teasdall RD. Stabilization of Lisfranc joint injuries: a biomechanical study. Foot Ankle Int. 2004;25(5):365–70.

    Article  PubMed  Google Scholar 

  46. Alberta FG, Aronow MS, Barrero M, Diaz-Doran V, Sullivan RJ, Adams DJ. Ligamentous Lisfranc joint injuries: a biomechanical comparison of dorsal plate and transarticular screw fixation. Foot Ankle Int. 2005;26(6):462–73.

    Article  PubMed  Google Scholar 

  47. Cottom JM, Hyer CF, Berlet GC. Treatment of Lisfranc fracture dislocations with an interosseous suture button technique: a review of 3 cases. J Foot Ankle Surg. 2008;47(3):250–8.

    Article  PubMed  Google Scholar 

  48. Ahmed S, Bolt B, McBryde A. Comparison of standard screw fixation versus suture button fixation in Lisfranc ligament injuries. Foot Ankle Int. 2010;31(10):892–6.

    Article  PubMed  Google Scholar 

  49. Cakir H, Van Vliet-Koppert ST, Van Lieshout EM, De Vries MR, Van Der Elst M, Schepers T. Demographics and outcome of metatarsal fractures. Arch Orthop Trauma Surg. 2011;131(2):241–5.

    Article  CAS  PubMed  Google Scholar 

  50. Lee DK, Mulder GD, Schwartz AK. Hallux, sesamoid, and first metatarsal injuries. Clin Podiatr Med Surg. 2011;28(1):43–56.

    Article  PubMed  Google Scholar 

  51. Lopez V, Calvi JP, Slullitel G. Mini thigthrope(R) fixation of unstable bony avulsion of the extensor hallucis longus tendon. Foot (Edinb). 2019;40:105–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Makwana .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Makwana, N., Ismael, S. (2023). Implantology of Fractures of the Foot. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_86

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_86

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics