Skip to main content

Implantology of Fractures of the Proximal Tibia

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Tibial plateau fractures are major injuries around the knee joint. The historical aspects of the evolution of various methods of surgically treating extra-articular and intra-articular fractures of the proximal tibia have been described in the present chapter. The biomechanical rationale for the choice of various implants has also been discussed. An overview has been provided about various implants that are available to the present-day surgeon for effectively managing tibial plateau fractures. The current preference for Schatzker I to IV is to place 3.5 mm anatomical plates and screws on the lateral and the medial tibial plateau compared to the 4.5 mm plates and screws because the 3.5 mm plates are more malleable, less bulky, have better anatomical fit, and give the option to place more number of screws in the subchondral bone. Placement of smaller diameter screws proximally is biomechanically superior to placing fewer larger diameter screws. Schatzker V and VI fractures are highly unstable and the implants used must be effective against various deforming forces. If single-column fixation is deemed sufficient then a single laterally placed 4.5/5.0 anatomical locking plate is the preferred choice. If dual plating is contemplated, a 3.5 mm locking plate on the lateral side and medial sides are preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reátiga Aguilar J, Rios X, González Edery E, De La Rosa A, Arzuza OL. Epidemiological characterization of tibial plateau fractures. J Orthop Surg Res. 2022;17(1):106. https://doi.org/10.1186/s13018-022-02988-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schatzker J. Compression in the surgical treatment of fractures of the tibia. Clin Orthop Relat Res. 1974;105:220–39.

    Article  Google Scholar 

  3. Stefanelli F, Cucurnia I, Grassi A, Pizza N, Di Paolo S, Casali M, Raggi F, Romagnoli M, Zaffagnini S. Post-operative complications of tibial plateau fractures treated with screws or hybrid external fixation. Musculoskelet Surg. 2022;106(4):469–74. https://doi.org/10.1007/s12306-021-00726-7.

    Article  CAS  PubMed  Google Scholar 

  4. Yan B, Sun J, Yin W. The prevalence of soft tissue injuries in operative Schatzker type IV tibial plateau fractures. Arch Orthop Trauma Surg. 2021;141(8):1269–75. https://doi.org/10.1007/s00402-020-03533-0.

    Article  PubMed  Google Scholar 

  5. Deng X, Hu H, Ye Z, Zhu J, Zhang Y, Zhang Y. Predictors of acute compartment syndrome of the lower leg in adults following tibial plateau fractures. J Orthop Surg Res. 2021;16(1):502. https://doi.org/10.1186/s13018-021-02660-7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luo CF, Sun H, Zhang B, Zeng BF. Three-column fixation for complex tibial plateau fractures. J Orthop Trauma. 2010;24(11):683–92. https://doi.org/10.1097/BOT.0b013e3181d436f3.

    Article  PubMed  Google Scholar 

  7. Samsami S, Herrmann S, Pätzold R, Winkler M, Augat P. Finite element analysis of bi-condylar Tibial plateau fractures to assess the effect of coronal splits. Med Eng Phys. 2020;84:84–95. https://doi.org/10.1016/j.medengphy.2020.07.026.

    Article  PubMed  Google Scholar 

  8. Samsami S, Pätzold R, Winkler M, Herrmann S, Augat P. The effect of coronal splits on the structural stability of bi-condylar tibial plateau fractures: a biomechanical investigation. Arch Orthop Trauma Surg. 2020;140(11):1719–30. https://doi.org/10.1007/s00402-020-03412-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dehoust J, Münch M, Seide K, Barth T, Frosch KH. Biomechanical aspects of the posteromedial split in bicondylar tibial plateau fractures-a finite-element investigation. Eur J Trauma Emerg Surg. 2020;46(6):1257–66. https://doi.org/10.1007/s00068-020-01538-3.

    Article  CAS  PubMed  Google Scholar 

  10. Giordano V, Kfuri M, Belangero W, Venturini A, Silva AC, Soares EM, Pires RE, Koch HA. Non-locked and locked small fragment straight plates have a similar behavior in buttressing the posteromedial shear tibial plateau fragment: a biomechanical analysis of three different fixations. J Exp Orthop. 2020;7(1):2. https://doi.org/10.1186/s40634-020-0218-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scotland T, Wardlaw D. The use of cast-bracing as treatment for fractures of the tibial plateau. J Bone Joint Surg Br. 1981;63B(4):575–8. https://doi.org/10.1302/0301-620X.63B4.7298688.

    Article  CAS  PubMed  Google Scholar 

  12. Delamarter R, Hohl M. The cast brace and tibial plateau fractures. Clin Orthop Relat Res. 1989;242:26–31.

    Article  Google Scholar 

  13. Marwah V, Gadegone WM, Magarkar DS. The treatment of fractures of the tibial plateau by skeletal traction and early mobilisation. Int Orthop. 1985;9(4):217–21. https://doi.org/10.1007/BF00266506.

    Article  CAS  PubMed  Google Scholar 

  14. Lee SM, Oh CW, Oh JK, Kim JW, Lee HJ, Chon CS, Lee BJ, Kyung HS. Biomechanical analysis of operative methods in the treatment of extra-articular fracture of the proximal tibia. Clin Orthop Surg. 2014;6(3):312–7. https://doi.org/10.4055/cios.2014.6.3.312.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen F, Huang X, Ya Y, Ma F, Qian Z, Shi J, Guo S, Yu B. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures. J Orthop Surg Res. 2018;13(1):12. https://doi.org/10.1186/s13018-017-0707-8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Scolaro JA, Wright DJ, Lai W, Fraipont G, Hitchens H, Kwak D, McGarry M, Lee TQ. Fixation of extra-articular proximal tibia fractures: biomechanical comparison of single and dual implant constructs. J Am Acad Orthop Surg. 2022;30(13):629–35. https://doi.org/10.5435/JAAOS-D-21-01089.

    Article  PubMed  Google Scholar 

  17. Parker PJ, Tepper KB, Brumback RJ, Novak VP, Belkoff SM. Biomechanical comparison of fixation of type-I fractures of the lateral tibial plateau. Is the antiglide screw effective? J Bone Joint Surg Br. 1999;81(3):478–80. https://doi.org/10.1302/0301-620x.81b3.9100.

    Article  CAS  PubMed  Google Scholar 

  18. Koval KJ, Polatsch D, Kummer FJ, Cheng D, Zuckerman JD. Split fractures of the lateral tibial plateau: evaluation of three fixation methods. J Orthop Trauma. 1996;10(5):304–8. https://doi.org/10.1097/00005131-199607000-00003.

    Article  CAS  PubMed  Google Scholar 

  19. Jordan MC, Zimmermann C, Gho SA, Frey SP, Blunk T, Meffert RH, Hoelscher-Doht S. Biomechanical analysis of different osteosyntheses and the combination with bone substitute in tibial head depression fractures. BMC Musculoskelet Disord. 2016 Jul 15;17:287. https://doi.org/10.1186/s12891-016-1118-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cross WW 3rd, Levy BA, Morgan JA, Armitage BM, Cole PA. Periarticular raft constructs and fracture stability in split-depression tibial plateau fractures. Injury. 2013;44(6):796–801. https://doi.org/10.1016/j.injury.2012.12.028.

    Article  PubMed  Google Scholar 

  21. Patil S, Mahon A, Green S, McMurtry I, Port A. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures. Knee. 2006;13(3):231–5. https://doi.org/10.1016/j.knee.2006.03.003.

    Article  PubMed  Google Scholar 

  22. Mayr R, Attal R, Zwierzina M, Blauth M, Schmoelz W. Effect of additional fixation in tibial plateau impression fractures treated with balloon reduction and cement augmentation. Clin Biomech. 2015;30(8):847–51. https://doi.org/10.1016/j.clinbiomech.2015.05.016.

    Article  Google Scholar 

  23. Heilig P, Faerber LC, Paul MM, Kupczyk E, Meffert RH, Jordan MC, Hoelscher-Doht S. Plate osteosynthesis combined with bone cement provides the highest stability for tibial head depression fractures under high loading conditions. Sci Rep. 2022;12(1):15481. https://doi.org/10.1038/s41598-022-19107-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu CC, Tai CL. Plating treatment for tibial plateau fractures: a biomechanical comparison of buttress and tension band positions. Arch Orthop Trauma Surg. 2007;127(1):19–24. https://doi.org/10.1007/s00402-006-0192-8.

    Article  PubMed  Google Scholar 

  25. Cift H, Cetik O, Kalaycioglu B, Dirikoglu MH, Ozkan K, Eksioglu F. Biomechanical comparison of plate-screw and screw fixation in medial tibial plateau fractures (Schatzker 4). A model study. Orthop Traumatol Surg Res. 2010;96(3):263–7. https://doi.org/10.1016/j.otsr.2009.11.016.

    Article  CAS  PubMed  Google Scholar 

  26. Huang X, Zhi Z, Yu B, Chen F. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study. J Orthop Surg Res. 2015;10:182. https://doi.org/10.1186/s13018-015-0325-2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Faur CI, Niculescu B. Comparative biomechanical analysis of three implants used in bicondylar tibial fractures. Wien Med Wochenschr. 2018;168(9–10):254–60. https://doi.org/10.1007/s10354-017-0551-9.

    Article  PubMed  Google Scholar 

  28. Hasan S, Ayalon OB, Yoon RS, Sood A, Militano U, Cavanaugh M, Liporace FA. A biomechanical comparison between locked 3.5-mm plates and 4.5-mm plates for the treatment of simple bicondylar tibial plateau fractures: is bigger necessarily better? J Orthop Traumatol. 2014;15(2):123–9. https://doi.org/10.1007/s10195-013-0275-6.

    Article  PubMed  Google Scholar 

  29. Higgins TF, Klatt J, Bachus KN. Biomechanical analysis of bicondylar tibial plateau fixation: how does lateral locking plate fixation compare to dual plate fixation? J Orthop Trauma. 2007;21(5):301–6. https://doi.org/10.1097/BOT.0b013e3180500359.

    Article  PubMed  Google Scholar 

  30. García Vélez DA, Headford M, Suresh KV, Liberatos PM, Bledsoe G, Revak T. Biomechanical analysis of dual versus lateral locked plating in elderly bicondylar tibial plateau fractures: does medial comminution matter? Injury. 2022;53(10):3109–14. https://doi.org/10.1016/j.injury.2022.08.039.

    Article  PubMed  Google Scholar 

  31. Baumann P, Ebneter L, Giesinger K, Kuster MS. A triangular support screw improves stability for lateral locking plates in proximal tibial fractures with metaphyseal comminution: a biomechanical analysis. Arch Orthop Trauma Surg. 2011;131(6):815–21. https://doi.org/10.1007/s00402-010-1243-8.

    Article  PubMed  Google Scholar 

  32. Yoo BJ, Beingessner DM, Barei DP. Stabilization of the posteromedial fragment in bicondylar tibial plateau fractures: a mechanical comparison of locking and nonlocking single and dual plating methods. J Trauma. 2010;69(1):148–55. https://doi.org/10.1097/TA.0b013e3181e17060.

    Article  PubMed  Google Scholar 

  33. Ye X, Huang D, Perriman DM, Smith PN. Influence of screw to joint distance on articular subsidence in tibial-plateau fractures. ANZ J Surg. 2019;89(4):320–4. https://doi.org/10.1111/ans.14978.

    Article  PubMed  Google Scholar 

  34. Metcalfe D, Hickson CJ, McKee L, Griffin XL. External versus internal fixation for bicondylar tibial plateau fractures: systematic review and meta-analysis. J Orthop Traumatol. 2015;16(4):275–85. https://doi.org/10.1007/s10195-015-0372-9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar D, Sodavarapu P, Aggarwal A, Hooda A, Sajid M. Management and outcome of a complex medial tibial plateau fracture: a case report of a rare knee Varus injury variant. JBJS Case Connect. 2020;10(4):e19.00626. https://doi.org/10.2106/JBJS.CC.19.00626.

    Article  PubMed  Google Scholar 

  36. Cho JW, Samal P, Jeon YS, Oh CW, Oh JK. Rim plating of posterolateral fracture fragments (PLFs) through a modified anterolateral approach in tibial plateau fractures. J Orthop Trauma. 2016;30(11):e362–8. https://doi.org/10.1097/BOT.0000000000000638.

    Article  PubMed  Google Scholar 

  37. Giordano V, Schatzker J, Kfuri M. The “hoop” plate for posterior bicondylar shear tibial plateau fractures: description of a new surgical technique. J Knee Surg. 2017;30(6):509–13. https://doi.org/10.1055/s-0036-1593366.

    Article  PubMed  Google Scholar 

  38. Foos JK, Josifi E, Large TM. Supine posterior hoop plating of bicondylar posterior coronal shear tibial plateau fractures without fibular osteotomy. J Orthop Trauma. 2023;37(1):45–50. https://doi.org/10.1097/BOT.0000000000002420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vishwanathan, K., Ghosh, S. (2023). Implantology of Fractures of the Proximal Tibia. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_82

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_82

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics