Skip to main content

Predicting the Future of Orthopaedic Trauma Implantology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Implants remain the mainstay in almost all the orthopaedic applications such as fracture fixation, non-union surgeries, arthrodesis, total joint arthroplasty, spine surgery, arthroscopy, and soft tissue anchorage. The advent of newer materials and manufacturing technologies has enabled the surgeons to provide the enhanced care to the patients significantly improving the clinical outcomes of the surgery. The revolutionary phase in orthopaedic surgery has invested more efforts on future implants; this has encouraged more and more stakeholders to dig into the world of metallurgy and implantology. The future that is on the horizon is clearly one of the patient-specific and disease-specific implants. Creating such future would entail a team effort where not only the bioengineers but also the orthopaedic surgeons and metallurgist will play an equal role.

In the past, the implants were engineered only as a mechanical device, and the biological aspects were the by-product of stable internal/external fixation of the implant to surrounding tissue/bone. The present and the future rely on the incorporation of the synergistic reactions between the host tissue and implants in order to enhance osseointegration and mitigate adverse tissue reactions including the infections, improving the longevity of the implant. While the research still lies in preclinical stage, the surgeons, bioengineers, and material scientist continue to explore the future in surface coating to improve clinical outcomes.

With the ease of availability of the customized and patient-specific orthopaedic implants, the concept of one size fits all will not be an appropriate choice for improving the clinical outcomes. The future is ready to offer the concept of “smart implants”, the implant that has imbedded sensors for detection of infection, joint dislocation, healing measurements, bone ingrowth, performance trackers, controlled local drug delivery, etc.

This chapter describes the future in implantology with the newer implants, manufacturing techniques, and advances and future expectations in implants to enhance the clinical outcomes that very much strongly depend on the events like osseointegration, osseoincorporation, infection prevention, and implant longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahyussalim AJ, Marsetio AF, Saleh I, Kurniawati T, Whulanza Y. The needs of current implant technology in orthopaedic prosthesis biomaterials application to reduce prosthesis failure rate. J Nanomater. 2016;2016:9. https://doi.org/10.1155/2016/5386924.

  2. Markatos K, Tsoucalas G, Sgantzos M. Hallmarks in the history of orthopaedic implants for trauma and joint replacement. AMHA-Acta Medico-Historica Adriatica. 2016;14(1):161–76.

    Google Scholar 

  3. Brand RA. Sir William Arbuthnot Lane, 1856–1943. Clin Orthop Relat Res®. 2009;467(8):1939–43.

    Article  PubMed  Google Scholar 

  4. Paganias CG, Tsakotos GA, Koutsostathis SD, Macheras GA. Osseous integration in porous tantalum implants. Indian J Orthop. 2012;46:505–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. D’Angelo F, Murena L, Campagnolo M, Zatti G, Cherubino P. Analysis of bone ingrowth on a tantalum cup. Indian J Orthop. 2008;42:275–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplast. 1999;14:347–54.

    Article  CAS  Google Scholar 

  7. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. ActaBiomater. 2010;6(8):3349–59. https://doi.org/10.1016/j.actbio.2010.01.046. Epub 2010 Feb 2. PMID: 20132912; PMCID: PMC2883027.

  8. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harting R, Barth M, Bührke T, Pfefferle RS, Petersen S. Functionalization of polyethetherketone for application in dentistry and orthopedics. BioNanoMaterials. 2017;18(1–2):20170003. https://doi.org/10.1515/bnm-2017-0003.

  10. Haleem A, Javaid M, Vaish A, Vaishya R. Three-dimensional-printed polyether ether ketone implants for orthopedics. Indian J Orthop. 2019;53:377–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57.

    PubMed  PubMed Central  Google Scholar 

  12. Kirmanidou Y, Sidira M, Drosou ME, Bennani V, Bakopoulou A, Tsouknidas A, Michailidis N, Michalakis K. New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: a review. Biomed Res Int. 2016;2016:2908570.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19(18):1621–39.

    Article  CAS  PubMed  Google Scholar 

  14. Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals. 2019;32(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  15. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    Article  CAS  PubMed  Google Scholar 

  16. Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33:3792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–709.

    Article  CAS  PubMed  Google Scholar 

  18. Sridharan R, Cameron AR, Kelly DJ, Kearney CJ, O’Brien FJ. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today. 2015;18:313–25.

    Article  CAS  Google Scholar 

  19. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  CAS  PubMed  Google Scholar 

  20. Langer R. I articles. Science. 1993;260:5110.

    Google Scholar 

  21. Im GI. Biomaterials in orthopaedics: the past and future with immune modulation. Biomater Res. 2020;24(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, Zan R, Miri AK, Li Z, Zhang X, Lee J. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah S, Bagaria V. 3D printing- creating a blueprint for the future of orthopedics: Current concept review and the road ahead!. J Clin Orthop Trauma. 2018;9(3):207–212. https://doi.org/10.1016/j.jcot.2018.07.007.

  24. Leeuwenburgh SCG, Wolke JGC, Jansen JA, Jonge LT d. Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25(10):2357–69. https://doi.org/10.1007/s11095-008-9617-0.

    Article  CAS  PubMed  Google Scholar 

  25. Kulkarni M, Mazare A, Schmuki P, Iglic A, Seifalian A. Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine. 2014;111:11.

    Google Scholar 

  26. Shahali H, Jaggessar A, Yarlagadda PK. Recent advances in manufacturing and surface modification of titanium orthopaedic applications. Procedia Eng. 2017;174:1067–76.

    Article  CAS  Google Scholar 

  27. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants. Biomed Res Int. 2015;2015:791725. https://doi.org/10.1155/2015/791725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rautray TR, Narayanan R, Kwon TY, Kim KH. Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater. 2010;93B(2):581–91. https://doi.org/10.1002/jbm.b.31596.

    Article  CAS  Google Scholar 

  29. Braceras I, Alava JI, Oñate JI, Brizuela M, Garcia-Luis A, Garagorri N, de Maeztu MA. Improved osseointegration in ion implantation-treated dental implants. Surf Coat Technol. 2002;158:28–32. https://doi.org/10.1016/S0257-8972(02)00203-7.

    Article  Google Scholar 

  30. Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ. Surface modification of biomaterials by plasma immersion ion implantation. Surf Coat Technol. 2004;186(1):218–26. https://doi.org/10.1016/j.surfcoat.2004.04.041.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bagaria, V., Sharma, A., Sadigale, O. (2023). Predicting the Future of Orthopaedic Trauma Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics