Skip to main content

Impact of Increased Life Expectancy on Orthopaedic Trauma Implantology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

The chapter explores the profound implications of increased life expectancy on orthopaedic trauma implantology. As advancements in healthcare and lifestyle improvements contribute to longer life spans, the ageing population becomes more susceptible to traumatic injuries requiring orthopaedic interventions. This chapter examines the evolving landscape of implantology, considering the unique challenges and opportunities arising from the growing demand for orthopaedic implants in older individuals. It investigates the impact of age-related factors such as osteoporosis and compromised bone healing on implant success rates. Furthermore, the chapter highlights strategies for adapting implant designs and surgical approaches to optimise outcomes and enhance the quality of life for this expanding patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Puccio F, Mattei L. Biotribology of artificial hip joints. World J Orthop. 2015;6(1):77–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mukhopadhaya J, Jain AK. AO principles of fracture management. Indian J Orthop. 2019;53(1):217–8.

    Article  PubMed Central  Google Scholar 

  3. Kurtz BSM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am. 2007;89(Suppl 3):144–51.

    PubMed  Google Scholar 

  4. Liow MHL, Kwon YM. Metal-on-metal total hip arthroplasty: risk factors for pseudotumours and clinical systematic evaluation. Int Orthop [Internet] 2017;41(5):885–892. Available from: https://doi.org/10.1007/s00264-016-3305-1.

  5. Mihalko WM, Wimmer MA, Pacione CA, Laurent MP, Murphy RF, Rider C. How have alternative bearings and modularity affected revision rates in total hip arthroplasty? Clin Orthop Relat Res. 2014;472(12):3747–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chouhan V. Arthroscopic fixation of tibial spine avulsion fracture in open physis. J Orthop Case Rep. 2016;6(2):86–8.

    PubMed  PubMed Central  Google Scholar 

  7. Klenk J, Keil U, Jaensch A, Christiansen MC, Nagel G. Changes in life expectancy 1950–2010: contributions from age- and disease-specific mortality in selected countries. Popul Health Metr [Internet] 2016;1–11. Available from: https://doi.org/10.1186/s12963-016-0089-x.

  8. Timonin S, Shkolnikov VM, Jasilionis D, Grigoriev P, Jdanov DA, Leon DA. Disparities in length of life across developed countries: measuring and decomposing changes over time within and between country groups. Popul Health Metr [Internet]. 2016;1–19. Available from: https://doi.org/10.1186/s12963-016-0094-0.

  9. Liou L, Joe W, Kumar A, Subramanian SV. Inequalities in life expectancy: an analysis of 201 countries, 1950–2015. Soc Sci Med. 2020;253(March):112964.

    Article  PubMed  Google Scholar 

  10. Joeris A, Höglinger M, Meier F, Knö F, Scholz S, Brügger U, et al. The impact of the AO Foundation on fracture care: an evaluation of 60 years AO Foundation. Injury. 2019;50(11):1868–75.

    Article  PubMed  Google Scholar 

  11. Licona CR. Incidencia de padecimientos ortopédicos en pacientes adultos atendidos en un Hospital de asistencia privada. Acta Ortop Mex. 2007;21:177–81.

    Google Scholar 

  12. Daniachi D, Netto S, Ono NK, Guimarães RP, Polesello GC, Honda EK. Epidemiology of fractures of the proximal third of the femur in elderly patients. Rev Bras Ortop [Internet] 2015;50(4):371–7. Available from: https://doi.org/10.1016/j.rboe.2015.06.

  13. Kane RL, Ouslander JG, Resnick B, Malone ML. Principios de geriatría clínica. 8th ed. McGRAW-HILL Interamericana Editores, S.A. de C.V; 2018. ISBN-13: 978-1-4562-6126-9l; ISBN-10: 1-4562-6126-6

    Google Scholar 

  14. Antoniadou E, Kouzelis A, Diamantakis G, Bavelou A, Panagiotopoulos E. Characteristics and diagnostic workup of the patient at risk to sustain fragility fracture. Injury [Internet] 2017;48:S17–23. Available from: https://doi.org/10.1016/j.injury.2017.08.033.

  15. Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37:691–7. https://doi.org/10.1016/j.injury.2006.04.130.

    Article  PubMed  Google Scholar 

  16. Wei J, Zeng L, Li S, Luo F, Xiang Z, Ding Q. Relationship between comorbidities and treatment decision-making in elderly hip fracture patients. Aging Clin Exp Res [Internet] 2019;31(12):1735–41. Available from: https://doi.org/10.1007/s40520-019-01134-5

  17. Court-Brown CM, McQueen MM. Global forum: fractures in the elderly. J Bone Joint Surg Am. 2016;98:e36. https://doi.org/10.2106/JBJS.15.00793.

    Article  PubMed  Google Scholar 

  18. Court-Brown CM, Clement ND, Duckworth AD, Biant LC, McQueen MM. The changing epidemiology of fall-related fractures in adults. Injury. 2017;48:819–24. https://doi.org/10.1016/j.injury.2017.02.021.

    Article  CAS  PubMed  Google Scholar 

  19. Court-brown CM, Duckworth AD, Clement ND, Mcqueen MM. Fractures in older adults. A view of the future? Injury [Internet]. 2018;49(12):2161–6. Available from: https://doi.org/10.1016/j.injury.2018.11.009

  20. Strømsøe K. Fracture fixation problems in osteoporosis. Injury. 2004;35:107–13. https://doi.org/10.1016/j.injucy.2003.08.019.

    Article  PubMed  Google Scholar 

  21. Wikipedia contributors. Mid-20th century baby boom. Wikipedia, The Free Encyclopedia. 2023; https://en.wikipedia.org/w/index.php?title=Mid-20th_century_baby_boom&oldid=1144374538

  22. Frey WH. The National Center for Health Statistics. Teaching/training modules on trends in health and aging. Website http://www.asaging.org/blog/aging-community-communitarianalternative-aging-place-alone. Accessed 21 Feb 2015.

  23. Costa AG, Wyman A, Siris ES, Watts NB, Silverman S, Saag KG, et al. When, where and how osteoporosis-associated fractures occur: an analysis from the Global Longitudinal Study of Osteoporosis in Women (GLOW). PLoS One. 2013;(12):8, e83306.

    Google Scholar 

  24. U. S. Department of Health and Human Services. The 2004 surgeon general’s report on bone health and osteoporosis. Website. http://www.ncbi.nlm.nih.gov/books/NBK45513/. Accessed 21 Feb 2015.

  25. Su H, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ. The relation between discharge hemoglobin and outcome after hip fracture. Am J Orthop (Belle Mead NJ). 2004;33:576–80.

    PubMed  Google Scholar 

  26. Ekman EF. The role of the orthopaedic surgeon in minimizing mortality and morbidity associated with fragility fractures. J Am Acad Orthop Surg. 2010;18(5):278–85.

    Google Scholar 

  27. Schatzker J. Changes in the AO/ASIF principles and methods. Injury. 1995;26(Suppl. 2):51–6.

    Article  Google Scholar 

  28. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): scientific background, design, and application. Injury. 1991;22(Suppl. 1):1–41.

    PubMed  Google Scholar 

  29. Haidukewych GJ. Innovations in locking plate technology. J Am Acad Orthop Surg. 2004;12:205–12. https://doi.org/10.5435/00124635-200407000-00001.

    Article  PubMed  Google Scholar 

  30. Schütz M, Südkamp NP. Revolution in plate osteosynthesis: new internal fixator systems. J Orthop Sci. 2003;8:252–8. https://doi.org/10.1007/s007760300044.

    Article  PubMed  Google Scholar 

  31. Cronier P, Pietu G, Dujardin C, Bigorre N, Ducellier F, Gerard R. The concept of locking plates. Orthop Traumatol Surg Res. 2010;96:S17–36. https://doi.org/10.1016/j.otsr.2010.03.008.

    Article  Google Scholar 

  32. Kubiak EN, Fulkerson E, Strauss E, Egol KA. The evolution of locked plates. J Bone Joint Surg Am. 2006;88(Suppl 4):189–200. https://doi.org/10.2106/JBJS.F.00703.

    Article  PubMed  Google Scholar 

  33. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury. 2003;34(Suppl 2):B63–76. https://doi.org/10.1016/j.injury.2003.09.026.

    Article  PubMed  Google Scholar 

  34. Frigg R. Development of the locking compression plate. Injury. 2003;34(Suppl 2):B6–10. https://doi.org/10.1016/j.injury.2003.09.020.

    Article  PubMed  Google Scholar 

  35. Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47:1624–30. https://doi.org/10.1016/j.injury.2016.06.001.

    Article  PubMed  Google Scholar 

  36. Haidukewych G, Sems SA, Huebner D, Horwitz D, Levy B. Results of polyaxial locked-plate fixation of periarticular fractures of the knee. Surgical technique: surgical technique. J Bone Joint Surg Am. 2008;90(Suppl 2 Pt 1):117–34. https://doi.org/10.2106/JBJS.G.01086.

    Article  PubMed  Google Scholar 

  37. Martineau PA, Berry GK, Harvey EJ. Plating for distal radius fractures. Orthop Clin North Am. 2007;38(193–201):vi. https://doi.org/10.1016/j.ocl.2007.01.001.

    Article  PubMed  Google Scholar 

  38. Johanson NA, Litrenta J, Zampini JM, Kleinbart F, Goldman HM. Surgical treatment options in patients with impaired bone quality. Clin Orthop Relat Res. 2011;469:2237–47. https://doi.org/10.1007/s11999-011-1838-6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Hu Y, Geng Z, Su J. The “ Three in One ” Bone Repair Strategy for Osteoporotic Fractures. Front Endocrinol (Lausanne). 2022;13(June):910602.

    Article  PubMed  Google Scholar 

  40. Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19:219–33. https://doi.org/10.1615/critreveukargeneexpr.v19.i3.40.

    Article  CAS  PubMed  Google Scholar 

  41. Tomlinson RE, Li Z, Li Z, Minichiello L, Riddle RC, Venkatesan A, et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A. 2017;114:E3632–41. https://doi.org/10.1073/pnas.1701054114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konstantinidis L, Helwig P, Hirschmüller A, Langenmair E, Südkamp NP, Augat P. When is the stability of a fracture fixation limited by osteoporotic bone? Injury. 2016;47(Suppl 2):S27–32. https://doi.org/10.1016/S0020-1383(16)47005-1.

    Article  PubMed  Google Scholar 

  43. Witte F. Reprint of: the history of biodegradable magnesium implants: a review. Acta Biomater. 2015;23(Suppl):S28–40. https://doi.org/10.1016/j.actbio.2015.07.017.

    Article  PubMed  Google Scholar 

  44. Hou P, Han P, Zhao C, Wu H, Ni J, Zhang S, et al. Accelerating corrosion of pure magnesium co-implanted with titanium in vivo. Sci Rep. 2017:7. https://doi.org/10.1038/srep41924.

  45. Li H, Zheng Y, Qin L. Progress of biodegradable metals. Prog Nat Sci. 2014;24:414–22. https://doi.org/10.1016/j.pnsc.2014.08.014.

    Article  CAS  Google Scholar 

  46. Gawlik MM, Wiese B, Desharnais V, Ebel T, Willumeit-Römer R. The effect of surface treatments on the degradation of biomedical mg alloys-a review paper. Materials (Basel). 2018;11:2561. https://doi.org/10.3390/ma11122561.

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Liu X, Wu S, Yeung KWK, Zheng Y, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater. 2016;45:2–30. https://doi.org/10.1016/j.actbio.2016.09.005.

    Article  CAS  PubMed  Google Scholar 

  48. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34. https://doi.org/10.1016/j.biomaterials.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  49. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. Additive manufacturing of magnesium alloys. Bioact Mater. 2020;5:44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22:1160–9. https://doi.org/10.1038/nm.4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li G, Zhang L, Wang L, Yuan G, Dai K, Pei J, et al. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study. Acta Biomater. 2018;65:486–500. https://doi.org/10.1016/j.actbio.2017.10.033.

    Article  CAS  PubMed  Google Scholar 

  52. Tian L, Tang N, Ngai T, Wu C, Ruan Y, Huang L, et al. Hybrid fracture fixation systems developed for orthopaedic applications: a general review. J Orthop Translat. 2019;16:1–13. https://doi.org/10.1016/j.jot.2018.06.006.

    Article  CAS  PubMed  Google Scholar 

  53. Jones CB. Augmentation of implant fixation in osteoporotic bone. Curr Osteoporos Rep. 2012;10:328–36. https://doi.org/10.1007/s11914-012-0124-1.

    Article  PubMed  Google Scholar 

  54. Khouri RK, Koudsi B, Reddi H. Tissue transformation into bone in vivo. A potential practical application. JAMA. 1991;266:1953–5. https://doi.org/10.1001/jama.266.14.1953.

    Article  CAS  PubMed  Google Scholar 

  55. Wan L, Song H, Chen X, Zhang Y, Yue Q, Pan P, et al. A magnetic-field guided interface coassembly approach to magnetic mesoporous silica nanochains for osteoclast-targeted inhibition and heterogeneous nanocatalysis. Adv Mater. 2018;30:e1707515. https://doi.org/10.1002/adma.201707515.

    Article  CAS  PubMed  Google Scholar 

  56. Sommer C, Babst R, Müller M, Hanson B. Locking compression plate loosening and plate breakage: a report of four cases. J Orthop Trauma. 2004;18:571–7. https://doi.org/10.1097/00005131-200409000-00016.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saseendar Shanmugasundaram .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lozano, C.M., Samundeeswari, S., Araujo-Espinoza, G., Shanmugasundaram, S. (2023). Impact of Increased Life Expectancy on Orthopaedic Trauma Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics