Skip to main content

Impact of Changing Epidemiology on Orthopaedic Trauma Implantology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Epidemiological studies help us to assess the incidence and prevalence of fractures at different ages, aid us in identifying groups of the populations that are at risk, and compel us to develop appropriate preventative measures. These studies have shown changes in age population distribution, habits, and preferences in sports and outdoor activities, e.g., the elderly are more active and live longer; youth participation in extreme sports has spiked; and children are encouraged to excel in sports. These changes make it mandatory to develop implants with anatomical and low-profile fixation for plates. Durability with long-term positive results for prostheses to enable early healing and rehabilitation is also imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rico C. Incidencia de padecimientos ortopédicos en pacientes adultos atendidos en un Hospital de asistencia privada. Acta Ortop Mex. 2007;21(4):177–81.

    Google Scholar 

  2. Church TS, Thomas DM, Tudor-Locke C, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE. 2011;6(5):e19657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garcia J, Muñiz C, Garci J, Rodríguez P, Suárez M. Comparative analysis of sports practice by types of activities. Int J Sport Financ. 2016;11(4):327–48.

    Google Scholar 

  4. Valerio G, Gallè F, Mancusi C, et al. Pattern of fractures across pediatric age groups: analysis of individual and lifestyle factors. BMC Public Health. 2010;10:656.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rennie L, Court-Brown C, Mok J, Beattie T. The epidemiology of fractures in children. Injury. 2007;38:913–22.

    Article  PubMed  Google Scholar 

  6. Fassier A, Gaucherand P, Kohler R. Fractures in children younger than 18 months. Orthop Traumatol Surg Res. 2013;99(1):160–70.

    Article  Google Scholar 

  7. Jiménez de Domingo A, Rubio E, Marañon R, et al. Epidemiology and risk factors in injuries due to fall in infants under one year-old. An Pediatr. 2017;86(6):337–43.

    Article  Google Scholar 

  8. Hedström E, Svensson O, Bergonström U, Michno P. Epidemiology of fractures in children and adolescents. Acta Orthop. 2010;81(1):148–53.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Menon M, Walker J, Court-Brown C. The epidemiology of fractures in adolescents with reference to social deprivation. J Bone Joint Surg. 2008;90-B:1482–6.

    Article  Google Scholar 

  10. Wood A, Robertson G, Rennie L, Caesar B, Court-Brown C. The epidemiology of sports-related fractures in adolescents. Injury. 2010;41(8):834–8.

    Article  PubMed  Google Scholar 

  11. Lempesis V, Rosengren B, Landin L, et al. Hand fracture epidemiology and etiology in children-time trends in Malmö, Sweden, during six decades. J Orthop Surg Res. 2019;14:213.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aitken S, Rodrigues M, Duckworth A, et al. Determining the incidence of adult fractures: how accurate are emergency department data? Epidemiol Res Int. 2012;

    Google Scholar 

  13. Court-Brown C, Clement N, Duckworth A, Biant L, McQueen M. The changing epidemiology of fall-related fractures in adults. Injury. 2017;48(4):819–24.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Y, Liu S, Chen W, et al. Epidemiology of low-energy fracture in Chinese postmenopausal women: changing trend of incidence since menopause and associated risk factors, a national population-based survey. Menopause. 2018;26(3):286–92.

    Article  Google Scholar 

  15. Aitken S, Hutchison J, McQueen M, Court-Brown C. The importance of epidemiological fracture data. Bone Joint J. 2014;96-B:863–7.

    Article  CAS  PubMed  Google Scholar 

  16. Court-Brown C, Wood A, Aitken S. The epidemiology of acute sports-related fractures in adults. Injury. 2008;39:1365–72.

    Article  PubMed  Google Scholar 

  17. Court-Brown C, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37:691–7.

    Article  PubMed  Google Scholar 

  18. Kanis J, Oden A, Johnell O, et al. Epidemiology of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int. 2001;12:417–27.

    Article  CAS  PubMed  Google Scholar 

  19. Schade AT, Mbowuwa F, et al. Epidemiology of fractures and their treatment in Malawi: results of a multicentre prospective registry study to guide orthopaedic care planning. PLoS One. 2021;16(8)

    Google Scholar 

  20. Court-Brown C, Duckworth A, Clement N, McQueen M. Fractures in older adults. A view of the future? Injury. 2018;49:2161–6.

    Article  PubMed  Google Scholar 

  21. Brennan S, Holloway K, Williams L, et al. The social gradient of fractures at any skeletal site in men and women: data from the Geelong osteoporosis study fracture grid. Osteoporos Int. 2015;26(4):1351–9.

    Article  CAS  PubMed  Google Scholar 

  22. Johnell O, Kanis J. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int. 2004;15(11):897–902.

    Article  CAS  PubMed  Google Scholar 

  23. Rubenstein L, Josephson K. The epidemiology of falls and syncope. Clin Geriatr Med. 2002;18(2):141–58.

    Article  PubMed  Google Scholar 

  24. Court-Brown C, McQueen M. Global forum: fractures in the elderly. J Bone Joint Surg Am. 2016;98(e36):1–7.

    Google Scholar 

  25. Daniachi D, Dos Santos A, Keiske N, et al. Epidemiology of fractures of the proximal third of the femur in elderly patients. Rev Bras Ortop. 2015;50(4):371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Court-Brown C, Bugler K, Clement N, Duckworth A, McQueen M. The epidemiology of open fractures in adults. A 15-year review. Injury. 2012;43:891–7.

    Article  PubMed  Google Scholar 

  27. Gimeno J. Epidemiología de las fracturas osteoporóticas. Mortalidad y morbilidad. Rev Osteoporos Metab Miner. 2010;2(4):S5–9.

    Google Scholar 

  28. Winkler D, Goudie S, Court-Brown C. The changing epidemiology of open fractures in vehicle occupants, pedestrians, motorcyclists and cyclists. Injury. 2018;49(2):208–2012.

    Article  PubMed  Google Scholar 

  29. Court-Brown C, Rimmer S, Prakash U, McQueen M. The epidemiology of open long bone fractures. Injury. 1998;29(7):529–34.

    Article  CAS  PubMed  Google Scholar 

  30. Wood A, Robertson G, MacLeod K, Porter A, Court-Brown C. Epidemiology of open fractures in sport: one centre’s 15-year retrospective study. World J Orthop. 2017;8(7):524–605.

    Article  Google Scholar 

  31. Robertson G, Wood A, Bakker-Dyos J, Atiken S, Keenan A, Court-Brown C. The epidemiology, morbidity, and outcome of soccer-related fractures in a standard population. Am J Sports Med. 2012;40(8):1851–7.

    Article  PubMed  Google Scholar 

  32. Robertson G, Wood A, Heil K, Aitken S, Court-Brown C. The epidemiology, morbidity and outcome of fractures in rugby union from a standard population. Injury. 2014;45:677–83.

    Article  PubMed  Google Scholar 

  33. Gutiérrez de Rozas P, Salvadores P (dir). Una visión histórica de la cirugía ortopédica y traumatológica a través del desarrollo de los bioimplantes [trabajo fin de grado]. Universidad de Cantabria; 2013.

    Google Scholar 

  34. Schächter S. ¿Qué nos enseñaron 40 años de experiencia en el tratamiento de las fracturas de la pierna? Rev Asoc Arg Ortop y Traumatol. 1996;61(3):368–74.

    Google Scholar 

  35. Nicoll E. Fractures of the tibial shaft, a survey of 705 cases. J Bone Joint Surg Br. 1964;46:373–87.

    Article  CAS  PubMed  Google Scholar 

  36. Micheloni G, Tarallo L, Porcellini G, Catani F. Comparison between conservative treatment and plate fixation for displaced middle third clavicle fracture: clinical outcomes and complications. Acta Biomed. 2019;90(12-S):48–53.

    PubMed  PubMed Central  Google Scholar 

  37. Khan L, Bradnock T, Scott C, Robinson C. Fractures of the clavicle. J Bone Joint Surg Am. 2009;91(2):447–60.

    Article  PubMed  Google Scholar 

  38. Westrick E, Hamilton B, Toogood P, Henley B, Firoozabadi R. Humeral shaft fractures: results of operative and non-operative treatment. Int Orthop. 2017;41(2):385–95.

    Article  PubMed  Google Scholar 

  39. Kinney MC, Nagle D, Bastrom T, Linn MS, Schwartz AK, Pennock AT. Operative versus conservative management of displaced tibial shaft fracture in adolescents. J Pediatr Orthop. 2016;36(7):661–6.

    Article  PubMed  Google Scholar 

  40. Hao Z, Xia Y, Xia D, Zhang Y, Xu S. Treatment of open tibial diaphyseal fractures by external fixation combined with limited internal fixation versus simple external fixation: a retrospective cohort study. BMC Musculoskelet Disord. 2019;20:311.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Azam Q, Sherwani M, Abbas M, Gupta R, Asif N, Sabir A. Internal fixation in compound type III fractures presenting after golden period. Indian J Orthop. 2007;41(3):204–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rüedi TP, Buckley RE, Moran CG. AO principles of fracture management. 2nd ed. Stuttgart/New York: Georg Thieme Verlag; 2007.

    Google Scholar 

  43. Allende J. El uso de los clavos endomedulares bloqueados en el tratamiento de las fracturas de la tibia. Rev Asoc Arg Ortop y Traumatol. 61(1):24–33.

    Google Scholar 

  44. Luna E, Blanco F. Diseño y construcción de una placa LC – DCP para fracturas de antebrazo [Trabajo de grado]. Universidad de Carabobo; 2010.

    Google Scholar 

  45. Kubiak EN, Fulkerson E, Strauss E, Egol KA. The evolution of locked plates. J Bone Joint Surg Am. 2006;88(Suppl 4):189–200.

    PubMed  Google Scholar 

  46. Cabrolier J, Molina M. ¿Es superior el clavo endomedular a la placa en pacientes con fractura de tibia distal extraarticular? Is intramedullary nailing superior to plating in patients with extraarticular fracture of the distal tibia? Medwave. 2015;15(3):e6306.

    Article  PubMed  Google Scholar 

  47. Mukherjee S, Singh Arambam M, Waikhom S, et al. Interlocking nailing versus plating in tibial shaft fractures in adults: a comparative study. J Clin Diagn Res. 2017;11(4):RC08–13.

    PubMed  PubMed Central  Google Scholar 

  48. Singh P, Gandhi V, Bansal D. Comparative study of compression plating vs interlocking nail in fracture shaft of humerus. Int J Contem Med Res. 2016;3(11):3385–8.

    Google Scholar 

  49. Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11(6):383–9.

    Article  CAS  PubMed  Google Scholar 

  50. Taddei E, Henriques V, Silva C, Cairo C. Production of new titanium alloy for orthopedic implants. Mater Sci Eng. 2004;24(5):683–7.

    Article  Google Scholar 

  51. Witte F. Reprint of: the history of biodegradable magnesium implants: a review. Acta Biomater. 2015;23(S):S28–40.

    Article  PubMed  Google Scholar 

  52. Hou P, Han P, Zhao C, et al. Accelerating corrosion of pure magnesium co-implanted with titanium in vivo. Sci Rep. 2017;7(1):41924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aktan C, Ertan MB, Turan A, Kose O. Fixation of small osteochondral fragments in a comminuted distal humerus fracture with magnesium bioabsorbable screws: a case report. Cureus. 2018;10(12)

    Google Scholar 

  55. Biber R, Pauser J, Geßlein M, Bail HJ. Magnesium-based absorbable metal screws for intra-articular fracture fixation. Case Rep Orthop. 2016;2016:1–4.

    Article  Google Scholar 

  56. Kose O, Turan A, Unal M, Acar B, Guler F. Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: short-term clinical and radiological outcomes in eleven patients. Arch Orthop Trauma Surg. 2018;138(8):1069–75.

    Article  PubMed  Google Scholar 

  57. Acar B, Unal M, Turan A, Kose O. Isolated lateral malleolar fracture treated with a bioabsorbable magnesium compression screw. Cureus. 2018;10(4)

    Google Scholar 

  58. Pina S, Ferreira J. Bioresorbable plates and screws for clinical applications: a review. J Healthc Eng. 2012;3(2):243–60.

    Article  Google Scholar 

  59. Pawaskar A, Kekatpure A, Cho N, Rhee Y, Jeon I. Magnetic resonance appearance of bioabsorbable anchor screws for double row arthroscopic rotator cuff repairs. Indian J Orthop. 2015;49(2):164–17.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee D, Lee J, Kim S, et al. Comparison of poly-L-lactic acid and poly-L-lactic acid/hydroxyapatite bioabsorbable screws for tibial fixation in ACL reconstruction: clinical and magnetic resonance imaging results. Clin Orthop Surg. 2017;9(3):270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Diment L, Thompson M, Bergmann J. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017;7:e016891.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Malik H, Darwood A, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res. 2015;199(2):512–22.

    Article  PubMed  Google Scholar 

  63. Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma. 2018;9(3)

    Google Scholar 

  64. Vaishya R, Patralekh M, Vaish A, Agarwal A, Vijay V. Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma. 2018;9(3):194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jeong H, Park K, Kil K, Chong S, Eun H, Lee T, Lee J. Minimally invasive plate osteosynthesis using 3D printing for shaft fractures of clavicles. Arch Orthop Trauma Surg. 2014;134(11):1551–5.

    Article  PubMed  Google Scholar 

  66. Kim H, Liu X, Noh K. Use of a real-size 3D-printed model as a preoperative and intraoperative tool for minimally invasive plating of comminuted midshaft clavicle fractures. J Orthop Surg Res. 2015;10(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  67. You W, Liu L, Chen H, Xiong J, Wang D, Huang J, Ding J, Wang D. Application of 3D printing technology on the treatment of complex proximal humeral fractures (Neer3-part and 4-part) in old people. Orthop Traumatol Surg Res. 2016;102(7):897–903.

    Article  CAS  PubMed  Google Scholar 

  68. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop. 2017;41(11):2381–7.

    Article  PubMed  Google Scholar 

  69. de Muinck Keizer RJ, Lechner KM, Mulders MA, Schep NW, Eygendaal D, Goslings JC. Three-dimensional virtual planning of corrective osteotomies of distal radius malunions: a systematic review and meta-analysis. Strateg Trauma Limb Reconstr. 2017;12(2):77–89.

    Article  Google Scholar 

  70. Maini L, Sharma A, Jha S, Tiwari A. Three-dimensional printing and patientspecific pre-contoured plate: future of acetabulum fracture fixation? Eur J Trauma Emerg Surg. 2018;44(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  71. Arnal J, Pérez R, Gallo-del-Valle E, Igualada C, et al. Three dimensional-printed patient-specific cutting guides for femoral varization osteotomy: do it yourself. Knee. 2017;24(6):1359–68.

    Article  Google Scholar 

  72. Chen G, Li G, Chen X, Zhang G, You F, Chen J, Zeng Q, Zheng F, Yu Z. Effectiveness of distal femoral osteotomy assisted by three-dimensional printing technology for correction of valgus knee with osteoarthritis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(2):134–8.

    PubMed  Google Scholar 

  73. Giannetti S, Bizzotto N, Stancati A, Santucci A. Minimally invasive fixation in tibial plateau fractures using an pre-operative and intra-operative real size 3D printing. Injury. 2017;48(3):784–8.

    Article  PubMed  Google Scholar 

  74. Chung K, Huang B, Choi CH, Park YW, Kim HN. Utility of 3D printing for complex distal tibial fractures and malleolar avulsion fractures: technical tip. Foot Ankle Int. 2015 Dec;36(12):1504–10.

    Article  PubMed  Google Scholar 

  75. Rankin I, Rehman H, Frame M. 3D-printed patient-specific ACL femoral tunnel guide from MRI. Open Orthop J. 2018;12:59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sha Y, Wang H, Ding J, Tang H, Li C, Luo H, Liu J, Xu Y. A novel patient specific navigational template for anatomical reconstruction of the lateral ankle ligaments. Int Orthop. 2016;40(1):59–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saseendar Shanmugasundaram .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Torres, D., Araujo-Espinoza, G., Shanmugasundaram, S. (2023). Impact of Changing Epidemiology on Orthopaedic Trauma Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics