Skip to main content

Computer Navigation and Robotics in Orthopaedic Trauma Implantology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 26 Accesses

Abstract

Computer-Assisted Navigation (CAN) has been developed and promoted by surgeons and clinicians; it allows immediate feedback, optimizes surgical outcomes, and decreases intraoperative errors. Its use has been growing to improve clinical outcomes. As the skeletal anatomy is static, robotics makes preoperative planning simpler and improves intraoperative precision and navigation. There is increasing interest in the use of robotics in orthopaedic subspecialties especially due to the need for precision and accuracy to achieve reliable and reproducible results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enchev Y. Neuronavigation: geneology, reality, and prospects. Neurosurg Focus. 2009;27(3):E11.

    Article  PubMed  Google Scholar 

  2. Computer-assisted orthopedic surgery, robotics and navigation: what have we learned? [Internet]. [cited 2020 Mar 27]. Available from: https://www.healio.com/orthopedics/business-of-orthopedics/news/print/orthopedics-today/%7B5c87b4f8-2ac4-4b0c-b963-91a5caa5d2a0%7D/computer-assisted-orthopedic-surgery-robotics-and-navigation-what-have-we-learned

  3. Pedicle screw placement using image guided techniques: a publication of the Association of Bone and Joint Surgeons® | CORR® [Internet]. [cited 2020 Mar 27]. Available from: https://journals.lww.com/clinorthop/Fulltext/1998/09000/Pedicle_Screw_Placement_Using_Image_Guided.6.aspx

  4. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. Springer. 2012;21:247–55.

    Article  Google Scholar 

  5. Accuracy of Pedicle Screw Placement in Lumbar Vertebrae: Spine [Internet]. [cited 2020 Mar 27]. Available from: https://journals.lww.com/spinejournal/Abstract/1996/06010/Accuracy_of_Pedicle_Screw_Placement_in_Lumbar.8.aspx

  6. Mosheiff R, Khoury A, Weil Y, Liebergall M. First generation computerized fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma. 2004 Feb;18(2):106–11.

    Article  PubMed  Google Scholar 

  7. Collinge C, Coons D, Tornetta P, Aschenbrenner J. Standard multiplanar fluoroscopy versus a fluoroscopically based navigation system for the percutaneous insertion of iliosacral screws. J Orthop Trauma [Internet]. 2005 Apr [cited 2020 May 8];19(4):254–8. Available from: http://journals.lww.com/00005131-200504000-00005

  8. Gurusamy K, Parker MJ, Rowlands TK. The complications of displaced intracapsular fractures of the hip. J Bone Joint Surg Br [Internet]. 2005 May 1 [cited 2020 May 8];87-B(5):632–4. Available from: http://online.boneandjoint.org.uk/doi/10.1302/0301-620X.87B5.15237

  9. Booth KC, Donaldson TK, Dai QG. Femoral neck fracture fixation: a biomechanical study of two cannulated screw placement techniques. Orthopedics. 1998;21(11):1173–6.

    Article  CAS  PubMed  Google Scholar 

  10. Maurer SG, Wright KE, Kummer FJ, Zuckerman JD, Koval KJ. Two or three screws for fixation of femoral neck fractures? Am J Orthop (Belle Mead NJ). 2003;32(9):438–42.

    PubMed  Google Scholar 

  11. Bai Y-S, Zhang Y, Chen Z-Q, Wang C-F, Zhao Y-C, Shi Z-C, et al. Learning curve of computer-assisted navigation system in spine surgery. Chin Med J (Engl) [Internet]. 2010 Nov [cited 2020 Mar 27];123(21):2989–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21162943

  12. Learning curve in navigated total knee replacement. A multi-centre study comparing experienced and beginner centres – ScienceDirect [Internet]. [cited 2020 Mar 27]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0968016007002001

  13. Confalonieri N, Chemello C, Cerveri P, Manzotti A. Is computer-assisted total knee replacement for beginners or experts? Prospective study among three groups of patients treated by surgeons with different levels of experience. J Orthop Traumatol. 2012;13(4):203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kwoh YS, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60. https://doi.org/10.1109/10.1354.

    Article  CAS  PubMed  Google Scholar 

  15. Moustris GP, et al. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Rob Comput Assisted Surg. 2011;7:375–92. https://doi.org/10.1002/rcs.408.

    Article  CAS  Google Scholar 

  16. Surgical Robots Market | by Product & Service, Application & End User | MarketsandMarkets (n.d.). https://www.marketsandmarkets.com/Market-Reports/surgical-robots-market-256618532.html. Accessed 7 May 2020.

  17. Getting It Right First Time – GIRFT (n.d.). https://gettingitrightfirsttime.co.uk/. Accessed 7 May 2020.

  18. Nakamura N, et al. Does robotic milling for stem implantation in cementless THA result in improved outcomes scores or survivorship compared with hand rasping? Results of a randomized trial at 10 years. Clin Orthop Relat Res. Lippincott Williams and Wilkins. 2018;476(11):2169–73. https://doi.org/10.1097/CORR.0000000000000467.

    Article  Google Scholar 

  19. Chen AF, et al. Robotic technology in orthopaedic surgery. J Bone Joint Surg Am. 2018;100:1984–92.

    Article  PubMed  Google Scholar 

  20. Bargar WL. Robots in orthopaedic surgery: past, present, and future. In: Clinical orthopaedics and related research. Lippincott Williams and Wilkins; 2007. p. 31–6. https://doi.org/10.1097/BLO.0b013e318146874f.

    Chapter  Google Scholar 

  21. Lang JE, et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93-B:1296–9. https://doi.org/10.1302/0301-620X.93B10.27418.

    Article  Google Scholar 

  22. Panzica M, et al. Robotic distal locking of intramedullary nailing: technical description and cadaveric testing. Int J Med Rob Comput Assisted Surg. John Wiley and Sons Ltd. 2017;13(4). https://doi.org/10.1002/rcs.1831.

  23. Dagnino G, et al. Image-guided surgical robotic system for percutaneous reduction of joint fractures. Ann Biomed Eng. Springer New York LLC. 2017;45(11):2648–62. https://doi.org/10.1007/s10439-017-1901-x.

    Article  Google Scholar 

  24. Wang JQ, Wang Y, Feng Y, et al. Percutaneous sacroiliac screw placement: a prospective randomized comparison of robot-assisted navigation procedures with a conventional technique. Chin Med J. 2017;130(21):2527–34. https://doi.org/10.4103/0366-6999.217080.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bai L, Yang J, Chen X, Sun Y, Li X. Medical robotics in bone fracture reduction surgery: a review. Sensors (Basel). 2019;19(16):3593. https://doi.org/10.3390/s19163593. Published 2019 Aug 18.

    Article  PubMed  Google Scholar 

  26. Han PF, Chen CL, Zhang ZL, et al. Robotics-assisted versus conventional manual approaches for total hip arthroplasty: a systematic review and meta-analysis of comparative studies. Int J Med Robot. 2019;15(3):e1990. https://doi.org/10.1002/rcs.1990.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Booth RE, Sharkey PF, Parvizi J. Robotics in hip and knee arthroplasty: real innovation or marketing Ruse. J Arthroplast. 2019;34(10):2197–8. https://doi.org/10.1016/j.arth.2019.08.006.

    Article  Google Scholar 

  28. Jassim SS, Benjamin-Laing H, Douglas SL, Haddad FS. Robotic and navigation systems in orthopaedic surgery: how much do our patients understand? Clin Orthop Surg. 2014;6(4):462–7. https://doi.org/10.4055/cios.2014.6.4.462.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bozic KJ, Smith AR, Hariri S, et al. The 2007 ABJS Marshall Urist Award: the impact of direct-to-consumer advertising in orthopaedics. Clin Orthop Relat Res. 2007;458:202–19. https://doi.org/10.1097/BLO.0b013e31804fdd02.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aziz, S., Alva, K., Pandey, R. (2023). Computer Navigation and Robotics in Orthopaedic Trauma Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics