Skip to main content

Trying to Predict Implant Failure in Orthopaedic Traumatology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 106 Accesses

Abstract

Fixing a fracture is an important step in treating and achieving fracture union. Every fixed fractured needs to be followed up regularly and longitudinally until fracture consolidation is seen and the clinical pre-injury status of the patient is attained. However, sometimes this gradual return to normalcy does not proceed according to plan. The experienced surgeon can predict that the implant and fixation is about to fail. This prediction can in turn allow the surgeon to be well prepared with a sound plan even before attempting the index surgery or foresee the outcome of an already performed surgery and plan a treatment regimen to prevent implant from failing. This chapter discusses these predictors of failure with actual radiological examples as well as some of the remedies employed to deal with them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanaullah MI. An audit of implant failure in orthopedic surgery. 2014;26(2).

    Google Scholar 

  2. Fini M, Giardino R. In vitro and in vivo tests for the biological evaluation of candidate orthopedic materials: benefits and limits. J Appl Biomater Biomech. 2003;1:155–63.

    CAS  PubMed  Google Scholar 

  3. Lv H, Chang W, Yuwen P, et al. Are there too many screw holes in plates for fracture fixation? BMC Surg. 2017;17:46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Engelhart S, Segal RJ. Allergic reaction to vanadium causes a diffuse eczematous eruption and titanium alloy orthopedic implant failure. Cutis. 2017;99(4):245–9.

    PubMed  Google Scholar 

  5. Pacheco KA, Denver MSPH, et al. Chief complaint review allergy to surgical implants. J Allergy Clin Immunol Pract. 2015;3(5):683–95. https://doi.org/10.1016/j.jaip.2015.07.011 PMID:26362550.

  6. Thalji GN. Genome wide assessment of early osseointegration in implant-adherent cells. Source: Diss Abstr Int. 74-05(E), Section: B. 166 p.

    Google Scholar 

  7. Mödinger Y, Teixeira GQ, Cornelia. Role of the complement system in the response to orthopedic biomaterials. Int J Mol Sci. 2018;19:3367.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Landgraeber S, Jäger M, Jacobs JJ. Review Article The pathology of orthopedic implant failure is mediated by innate immune system cytokines. 2014. Article ID 185150, 9 pages.

    Google Scholar 

  9. Bottlang M, Schemitsch CE, Nauth A, et al. Biomechanical concepts for fracture fixation. J Orthop Trauma. 2015;29(012):S28.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dehghan N, McKee MD, Nauth A, et al. Surgical fixation of Vancouver type B1 periprosthetic femur fractures: a systematic review. J Orthop Trauma. 2014;28(12):721.

    Article  PubMed  Google Scholar 

  11. Rizk AS, Al-Ashhab ME. Primary bone grafting with locked plating for comminuted distal femoral fractures: can it improve the results? Egypt Orthop J. 2015;50:77–83.

    Article  Google Scholar 

  12. Esan O, Ikem IC, Orimolade EA, et al. Implant failure in lower limb long bone diaphyseal fractures at a tertiary hospital in IleIfe, Nigeria. Niger Postgrad Med J. 2014;21(2):1814.

    Article  Google Scholar 

  13. Ricci WM, Streubel PN, Morshed S, et al. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.

    Article  PubMed  Google Scholar 

  14. Perren, S. M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg. 2002;84(8):1093–110.

    Article  Google Scholar 

  15. Goodship AE, Kenwright J, Goodship AE, et al. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67(4):650–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bottlang M, Lesser M, Koerber J, et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 2010;92:1652–60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma. 2011;25(Suppl 1):S21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bottlang M, Doornink J, Fitzpatrick DC, et al. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 2009;91(8):1985–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meeuwis MA, Pull Ter Gunne AF, Verhofstad MH, et al. Construct failure after open reduction and plate fixation of displaced midshaft clavicular fractures. 2017. Epub Jan 23.

    Google Scholar 

  20. Brumback RJ, Virkus WW. Intramedullary nailing of femur: reamed versus non-reamed. J Am Acad Orthop Surg. 2000;8:83–90.

    Article  CAS  PubMed  Google Scholar 

  21. Winquist RA. Locked femoral nailing. J Am Acad Orthop Surg. 1993;1:95–105.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Kumar D, Gill SPS, et al. Evaluation of implant failure in long bones fractures – a retrospective study. Indian J Orthop Surg. 2016;2(1):64–8.

    Article  Google Scholar 

  23. Barbosa JL, do Nascimento IMV, Caminha IC, et al. Premature failure in orthopedic implants: analysis of three different cases. J Fail Anal Prev. 2009;9:67–73.

    Article  Google Scholar 

  24. Wilson WK, Morris RP, Ward AJ, et al. Torsional failure of carbon fiber composite plates versus stainless steel plates for comminuted distal fibula fractures. Foot Ankle Int. 2016;37(5):548–53.

    Article  PubMed  Google Scholar 

  25. Larsson Wexell C, Thomsen P, Aronsson BO, et al. Research Article Bone response to surface-modified titanium implants: studies on the early tissue response to implants with different surface characteristics. Hindawi Publishing Corporation Int J Biomater. 2013. Article ID 412482, 10 pages.

    Google Scholar 

  26. Förster Y, Rentsch C, Schneiders W, et al. Surface modification of implants in long bone biomatter. Landes Biosci. 2012;2(3):149–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nipun Rana .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rana, N., Das De, S. (2023). Trying to Predict Implant Failure in Orthopaedic Traumatology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics