Skip to main content

Silicone Implants in Orthopaedic Traumatology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Filler materials are organic or synthetic materials that fill volume defects when introduced into living tissues. The ideal filler material must be clinically and histologically biocompatible and non-reabsorbable and should not migrate within the tissues and should be aesthetically acceptable. Silastic implants have been used since the 1960s as a synthetic filler material for volume defects in living tissues. Over the years, the silicone material has undergone various updates. Silastic implants have been employed to treat hallux rigidus, hallux limitus, rheumatoid arthritis, trauma, and toe valgus deformities. The implant acts as a dynamic spacer for the joint, maintaining joint alignment and supporting the new capsuloligamentous system. Complication rates are generally low and include synovitis, lymphadenopathy, implant fracture, loosening, and infection. In this chapter, we will explore the use of Silastic implants and address their role in orthopedic trauma surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eppley BL, Summerlin DJ, Sadove AM. A potential biomaterial composite for dermal and subcutaneous augmentation. Ann Plast Surg. 1994;32(5):463–8.

    Article  CAS  PubMed  Google Scholar 

  2. Ersek RA, Beisang AA. Bioplastique: a new textured copolymer microparticle promises permanence in soft-tissue augmentation. Plast Reconstr Surg. 1991;87:693–702.

    Article  CAS  PubMed  Google Scholar 

  3. Jansen JA, Dhert WJ, Van der Waerden JP, Von Recum AF. Semi- quantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility. JNL Inv Surg. 1994;7:123.

    Article  CAS  Google Scholar 

  4. Butler K, Benghuzzi H, Tucci M, Cason Z. A comparison of fibrous tissue formation surrounding intraperitoneal and subcutaneous implantation of ALCAP, HA, and TCP ceramics. Biomed Sci Instrum. 1997;34:18–23.

    CAS  PubMed  Google Scholar 

  5. Jeyanthi R, Panduranga K. In vivo biocompatibility of collagen-poly (hydroxyethyl methacrylate) hydrogels. Biomaterials. 1990;11:238.

    Article  CAS  PubMed  Google Scholar 

  6. Elson ML. Soft tissue augmentation. A review. Dermato Surg. 1995;21(6):491–500.

    Article  CAS  Google Scholar 

  7. Alster TS, West TB. Human-derived and new synthetic injectable materials for soft-tissue augmentation: current status and role in cosmetic surgery. Plast Reconstr Surg. 2000;105:2515.

    Article  CAS  PubMed  Google Scholar 

  8. Brown BL, Neel HB, Kern EB. Implants of Supramid, Proplast, Plasti Pore, and Silastic. Arch Otolaryngol. 1979;105:605–9.

    Article  CAS  PubMed  Google Scholar 

  9. Anderson JM, Miller KM. Biomaterial biocompatibility and the macrophage. Biomaterials. 1984;5:5–10.

    Article  CAS  PubMed  Google Scholar 

  10. Needleman L. The microscopic interaction between silicone and the surrounding tissues. Clin Podiatr Med Surg. 1995;12:415–23.

    Google Scholar 

  11. Cambras RÁ. Tratado de cirugía ortopédica y traumatología. Ortopedia, vol. t2. La Habana: Editorial Pueblo y Educación; 1986. p. 92–109.

    Google Scholar 

  12. Swanson AA. Reconstructive surgery in the Orthoetec and foot. Clin Symp. 1979;31(6):301–3.

    Google Scholar 

  13. Freed JB. The increasing recognition of medullary lysis, cortical osteophytic proliferation, and fragmentation of implanted silicone polymer implants. J Foot Ankle Surg. 1993;32:171–9.

    CAS  PubMed  Google Scholar 

  14. Martinelli B. Silastic protheses for the head of the radius. J Bone Joint Surg. 1996;78B(1):7.

    Google Scholar 

  15. Ceruso M, Beyaleni C. Silastic replacement of the trapezium. J Bone Joint Surg. 1996;78B(1):8.

    Google Scholar 

  16. Jeffery AK, Moocraft R, Sanger LR. Metacarpo-phalangeal. Joint replacements using Swanson’s Silicone reeffer implants. J Bone Joint Surg. 1995;77B(3):332–3.

    Google Scholar 

  17. Coenstow AH. Campbell: cirugía ortopédica, vol. t1. 8th ed. Buenos Aires: Editora Médica Panamericana; 1993. p. 624–5.

    Google Scholar 

  18. Aviña Valencia J, Olivera Barajas J. Conceptos actuales de la cirugía de muñeca y mano en el paciente con artritis reumatoide: revisión y presentación de resultados. Rev Mex Ortop Traumatol. 1986;1(1):26–7.

    Google Scholar 

  19. Alnaimat FA, Owida HA, Al Sharah A, Alhaj M, Hassan M. Silicone and Pyrocarbon artificial finger joints. Appl Bionics Biomech. 2021;3(2021):5534796. https://doi.org/10.1155/2021/5534796. PMID: 34188692; PMCID: PMC8195645

    Article  Google Scholar 

  20. Egloff DV, Varadi G, Narakas A, Simonetta C, Cantero C. Silastic implants of the scaphoid and lunate. A long-term clinical study with a mean follow-up of 13 years. J Hand Surg Br. 1993;18(6):687–92. https://doi.org/10.1016/0266-7681(93)90223-3.

    Article  CAS  PubMed  Google Scholar 

  21. Ring D. Displaced, unstable fractures of the radial head: fixation vs replacement – what is the evidence? Injury. 2008;39:1329–37.

    Article  PubMed  Google Scholar 

  22. Meyer HL, Polan C, Bernstein A, Abel B, Burggraf M, Dudda M, Kauther MD. Acute joint blockage due to abrasion-related dislocation of a silastic radial head prosthesis: a histological examination after 14 years of durability. Case Rep Orthop. 2020 Aug;10:2020.

    Google Scholar 

  23. Maghen Y, Leo AJ, Hsu JW, Hausman MR. Is a silastic radial head still a reasonable option? Clin Orthop Relat Res. 2011 Apr;469(4):1061–70.

    Article  PubMed  Google Scholar 

  24. Schned AR, Taylor TH, Groff GD. Complications of silicone implants [letter]. JAMA. 1985;253:635.

    Article  CAS  PubMed  Google Scholar 

  25. Ferlic DC, Clayton ML, Halloway M. Complications of Silicone: implant surgery in the metacarpophalangeal joint. J Bone Joint Surg. 1975;57(A7):991.

    Article  CAS  PubMed  Google Scholar 

  26. May DA, Manaster BJ, Disler DG. Introduction to arthritis. In: May DA, Manaster BJ, Disler DG, editors. Musculoskeletal imaging. New York: Elsevier/Saunders; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saseendar Shanmugasundaram .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lozano, C.M., Samundeeswari, S., Shanmugasundaram, S. (2023). Silicone Implants in Orthopaedic Traumatology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics