Skip to main content

Principles of Bone Grafting

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Bone grafting is the treatment of choice for fracture non-unions and bone defects. From the incipient era of xenografts, bone grafting methodology has evolved many folds, to deliver a safe and more predictable outcome. The autografts have remained the preferred choice for most applications; however, their use is limited by the quantity of graft available and the donor site morbidity. Vascularized bone grafts (free or pedicled) have the advantage of the graft retaining its own blood supply and hence facilitate the healing process, especially with limited recipient site vascularity. The allografts and demineralized bone matrix are used when large quantities of grafts are needed. The risk of antigenicity (and subsequent rejection) and transmission of diseases remains a possibility, even after meticulous preparation.

Newer bone substitutes, like synthetic grafts of tricalcium phosphate and hydroxyapatite, have shown osteoconductive properties and high compressive strength and are being used either plain or impregnated with biologically active substances like growth factors.

Bone marrow aspirate concentrate is considered useful in the treatment of fracture delayed unions and management of osteoarthritis and chondral lesions in the knee, due to their high contents of growth factors. These have a limited number of progenitor cells, and hence, cultured autologous osteoblasts have found clinical application especially in the treatment of avascular necrosis of the femoral head. Bone growth factors like bone morphogenetic proteins (BMPs) improve the local milieu and promote healing due to osteoinductive properties. Sometimes, two or more types of graft are used in conjunction to improve the outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nair AK, Gadieri A, Chang SW, Buelher MJ. Molecular mechanics of mineralised collagen fibril in bone. Nat Commun. 2013;4:1724.

    Article  PubMed  Google Scholar 

  2. Agna JW, Knowles HC, Alverson G. The mineral content of normal human bone. J Clin Invest. 1958;37:1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arthur C, Hall JEG. Textbook of medical physiology. Philadelphia: Elsevier, Saunders; 2005.

    Google Scholar 

  4. Brett EA, Flacco J, Blackshear CP, Longaker MT, Wan DC. Biomimetics of bone implants: the regenerative road. BioResearch Open Access. 2017;6(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics. Organogenesis. 2012;8(4):114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Solheim E. Current concepts; Growth factors in bone. Section of Orthopaedics, Deaconess University Hospital, Haraldsplass, Bergen, Norway &misc 9 January 1998.

    Google Scholar 

  7. Chiarello E, Cadossi M, Tedesco G, Capra P, Calamelli C, Shehu A, Giannini S. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013;25(Suppl 1):S101–3.

    Article  PubMed  Google Scholar 

  8. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33(4):203–13.

    Article  PubMed  Google Scholar 

  9. Dinopoulos HT, Giannoudis PV. Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery. Expert Opin Drug Saf. 2006;5(6):847–66.

    Article  CAS  PubMed  Google Scholar 

  10. van der Stok J, Hartholt KA, Schoenmakers DAL, Arts JJC. The available evidence on demineralised bone matrix in trauma and orthopaedic surgery – a systematic review. Bone Joint Res. 2017;6(7):423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bostrom MPG, Seigerman DA. The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study. HSS J. 2005;1(1):9–18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Piuzzi NS, Mantripragada VP, Sumski A, Selvam S, Boehm C, Muschler GF. Bone marrow-derived cellular therapies in orthopaedics: part I: recommendations for bone marrow aspiration technique and safety. JBJS Rev. 2018;6(11):e4.

    Article  PubMed  Google Scholar 

  13. Chahla J, Mannava S, Cinque ME, Geeslin AG, Codina D, LaPrade RF. Bone marrow aspirate concentrate harvesting and processing technique. Arthrosc Tech. 2017;6(2):e441–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Piuzzi NS, Khlopas A, Newman JM, Ng M, Roche M, Husni ME, Spindler KP, Mont MA, Muschler G. Bone marrow cellular therapies: novel therapy for knee osteoarthritis. J Knee Surg. 2018;31(1):22–6.

    Article  PubMed  Google Scholar 

  15. Rodriguez-Fontan F, Piuzzi NS, Kraeutler MJ, Pascual-Garrido C. Early clinical outcomes of intra-articular injections of bone marrow aspirate concentrate for the treatment of early osteoarthritis of the hip and knee: a cohort study. PM R. 2018;10(12):1353–9.

    Article  PubMed  Google Scholar 

  16. Themistocleous GS, Chloros GD, Kyrantzoulis IM, et al. Effectiveness of a single intra-articular bone marrow aspirate concentrate (BMAC) injection in patients with grade 3 and 4 knee osteoarthritis. Heliyon. 2018;4(10):e00871.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holton J, Imam MA, Snow M. Bone marrow aspirate in the treatment of chondral injuries. Front Surg. 2016;3(33):1–6.

    Google Scholar 

  18. Kim SJ, Bahk WJ, Chang CH, Jang JD, Suhl KH. Treatment of osteonecrosis of the femoral head using autologous cultured osteoblasts: a case report. J Med Case Rep. 2008;2:58.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sen RK. Management of avascular necrosis of femoral head at pre-collapse stage. Indian J Orthop. 2009;43(1):6–16.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res. 1991;263:30–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gautam, V., Vaish, A., Vaishya, R. (2023). Principles of Bone Grafting. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics