Skip to main content

Advances in Bone Grafting Technology

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 23 Accesses

Abstract

The evolution of novel technologies has improved the development of newer bone substitute materials such as synthetics, bioceramics, and polymers which are currently considered as emerging substitute of auto- or allogenous bone for treating bone defects. The ideal bone substitute materials should be biocompatible, bioresorbable, osteoconductive, and osteoinductive and support the osseous ingrowth. This chapter is a summary of the current bone substitute materials and development of bone graft composites which may allow for improved therapeutic outcomes in patients with bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, et al. Nanotechnology in bone tissue engineering. Nanomedicine. 2015;11(5):1253–63. https://doi.org/10.1016/j.nano.2015.02.01.

    Article  CAS  PubMed  Google Scholar 

  3. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–53.

    Article  CAS  PubMed  Google Scholar 

  4. Snyder W, Leighton B, Kidd S, Shively S, Gorog J, Lowery JW. Survey of current and prospective approaches in bone grafting technology. J Musculoskelet Disord Treat. 2018;4(043):1–6.

    Google Scholar 

  5. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation, and migration collagen glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.

    Article  CAS  PubMed  Google Scholar 

  7. Bowman BM, Siska CC, Miller SC. Greatly increased cancellous bone formation with rapid improvements in bone structure in the rat maternal skeleton after lactation. J Bone Miner Res. 2002;17:1954–60.

    Article  CAS  PubMed  Google Scholar 

  8. Jain RK, Au P, Tam J, et al. Engineering vascularized tissue. Nat Biotechnol. 2005;23:821–3.

    Article  CAS  PubMed  Google Scholar 

  9. Malda J, Rouwkema J, Martens DE, et al. Oxygen gradients in tissue engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng. 2004;86(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  10. Flynn JM. Fracture repair and bone grafting. In: Rosemont IL, editor. OKU 10: orthopaedic knowledge update. Rosemont: American Academy of Orthopaedic Surgeons; 2011. p. 11–21.

    Google Scholar 

  11. Planell JA, Best S, Lacroix D, Merolli A. Bone repair biomaterials. Boca Raton: CRC Press; 2009. https://doi.org/10.1533/9781845696610.

    Book  Google Scholar 

  12. Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, Marei HE. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Reg Med. 2018;12(6):1448–68.

    Article  CAS  Google Scholar 

  13. Oryan A, Alidadi S, Moshiri A, Mafulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. https://doi.org/10.1186/1749-799X-9-18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol. 2015;11(4):213–22.

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200. https://doi.org/10.1016/j.actbio.2012.06.014.

    Article  CAS  PubMed  Google Scholar 

  16. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.

    Article  CAS  PubMed  Google Scholar 

  17. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–81.

    Article  CAS  PubMed  Google Scholar 

  18. Dey RE, Wimpenny I, Gough JE, Watts DC, Budd PM. Poly (vinylphosphonic acid-co-acrylic acid) hydrogels: the effect of copolymer composition on osteoblast adhesion and proliferation. J Biomed Mater Res. 2018;106(1):255–64.

    Article  CAS  Google Scholar 

  19. Zhao J, Han W, Chen H, Tu M, Huan S, et al. Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J Mater Sci Mater Med. 2012;23:517–25.

    Article  CAS  PubMed  Google Scholar 

  20. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  22. Salinas AG, Vallet-Regi M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 2013;3:11116–31.

    Article  CAS  Google Scholar 

  23. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wenhao W, Kelvin W, Yeungab K. Bone grafts and biomaterials substitutes for bone defect repair. Bioact Mater. 2017;2:224–47.

    Google Scholar 

  25. Smith TJ, Jason H, Sydney MP, Reginald S. Porous ceramic composite bone grafts. US 7,875,342 B2 (2011).

    Google Scholar 

  26. Vo TN, Shah SR, Lu S, Tatara AM, Lee EJ, Rho TT, et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials. 2016;83:1–11.

    Article  CAS  PubMed  Google Scholar 

  27. Brett E, Flacco J, Blackshear C, Longaker MT, Wan DC. Biomimetics of bone implants: the regenerative road. Bio Res Open Access. 2017;6(1):1–6.

    Article  CAS  Google Scholar 

  28. Sjöström T, McNamara LE, Meek R, Dalby MJ, Su B. 2D and 3D nanopatterning of titanium for enhancing osteoinduction of stem cells at implant surfaces. Adv Healthc Mater. 2013;2(9):1285–93.

    Article  PubMed  Google Scholar 

  29. Bsat S, Spiers A, Huang X. Recent trends in newly developed plasma-sprayed and sintered coatings for implant applications. J Therm Spray Technol. 2016;25:1088–110.

    Article  CAS  Google Scholar 

  30. Sjöström T, McNamara LE, Yang L, Dalby MJ, Su B. Novel anodization technique using a block copolymer template for nanopatterning of titanium implant surfaces. ACS Appl Mater Interfaces. 2012;4(11):6354–61.

    Article  PubMed  Google Scholar 

  31. Greer AIM, Goriainov V, Kanczler J, Black CRM, Turner LA, et al. Nanopatterned titanium implants accelerate bone formation in vivo. ACS Appl Mater Interfaces. 2020;12(30):33541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.

    Article  PubMed  Google Scholar 

  33. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.

    Article  CAS  PubMed  Google Scholar 

  34. Liao HT, Chen CT. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells. 2014;6:288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830–7.

    Article  CAS  PubMed  Google Scholar 

  36. Debnath UK. Mesenchymal stem cell therapy in chondral defects of knee: current concept review. Indian J Orthop. 2020;54(Suppl 1):S1–9.

    Article  Google Scholar 

  37. Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392–406.

    Article  CAS  PubMed  Google Scholar 

  38. Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys. 2014;561:64–73.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Guo J, Zhou Y, Wu G. The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng B Rev. 2014;20:84–92.

    Article  Google Scholar 

  40. Lowery JW, Brookshire B, Rosen V. A survey of strategies to modulate the bone morphogenetic protein signaling pathway: current and future perspectives. Stem Cells Int. 2016;2016:7290686. https://doi.org/10.1155/2016/7290686.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics. 2011;34:e877–84.

    Article  PubMed  Google Scholar 

  42. Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, et al. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med. 2007;1:306–13.

    Article  CAS  PubMed  Google Scholar 

  43. Patel ZS, Young S, Tabata Y, Jansen JA, Wong ME, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008;43:931–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaback LA, Soung Y, Naik A, Geneau G, Schwarz EM, Rosier RN, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem. 2008;105:219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yao W, Gua M, Jia J, Di W, Lay YAE, et al. Reversing bone loss by directing mesenchymal cells to bone. Stem Cells. 2013;31(9):2003–14.

    Article  CAS  PubMed  Google Scholar 

  46. Evans CH. Gene therapy for bone healing. Expert Rev Mol Med. 2010;12:e18.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl. 2004;43:6042–108.

    Article  CAS  PubMed  Google Scholar 

  48. Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine. 2012;7:4545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for Orthopedic implantable medical devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li J, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8:7992–8007.

    Article  CAS  PubMed  Google Scholar 

  51. Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25:3329–36.

    Article  CAS  PubMed  Google Scholar 

  52. Pang X, Zeng H, Liu J, Wei S, Zheng Y. The properties of nanohydroxyapatite materials and its biological effects. Mater Sci Appl. 2010;1(2):81–90.

    CAS  Google Scholar 

  53. Basu S, Wang J, Paul A. Nanomaterials for bone repair. Top 25 commentaries on surgery (2017). p. 2–25. www.avidscience.com

  54. Basu S, Pacelli S, Wang J, Paul A. Adoption of nanodiamonds as biomedical materials for bone repair. Nanomedicine (Lond). 2017;12(24):2709–13.

    Article  CAS  PubMed  Google Scholar 

  55. Pei B, Wang W, Dunne N, Li X. Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nanomaterials. 2019;9(10) 1501:1–39.

    Article  CAS  Google Scholar 

  56. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–82.

    Article  CAS  PubMed  Google Scholar 

  57. Pina S, Rebeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials (Basel). 2019;12(11) 1824:1–42. https://doi.org/10.3390/ma12111824.

    Article  CAS  Google Scholar 

  58. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Awad HA. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35:4026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bergmann C, Lindner M, Zhang W, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30:2563–7.

    Article  CAS  Google Scholar 

  60. Yi H, Rehman FU, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4(16050):1–11.

    Google Scholar 

  61. Lin L, Chow KL, Leng Y. Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res Part A. 2009;89:326–35.

    Article  Google Scholar 

  62. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  CAS  PubMed  Google Scholar 

  63. Lopes HB, Santos TDS, de Oliveira FS, Freitas GP, de Almeida AL, et al. Poly (vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation. J Biomater Appl. 2014;29:104–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal K. Debnath .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Debnath, U.K. (2023). Advances in Bone Grafting Technology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_119

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_119

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics