Skip to main content

Biomechanics of the Thoracic Spine

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

The thoracic spine is the largest segment of the spinal column and is comprised of 12 vertebrae. It confers immense stability to the entire spine being an integrated unit between a vertebral system and a costal system. The functional spinal unit is the smallest functional motion spinal segment and is characterized by a neutral and an elastic zone that dictate spinal stability and stiffness, respectively. Several spinal fixation devices were introduced that aim at creating a rigid construct with the spine, a construct that maintains position, provides stabilization, and restores alignment. Spinal hardware may fail due to incorrect selection/placement or from migration, dislodgment, or implant failure with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watkins R 4th, Watkins R 3rd, Williams L, et al. Stability provided by the sternum and rib cage in the thoracic spine. Spine (Phila Pa 1976). 2005;30(11):1283–6. https://doi.org/10.1097/01.brs.0000164257.69354.bb.

    Article  PubMed  Google Scholar 

  2. Brasiliense LB, Lazaro BC, Reyes PM, Dogan S, Theodore N, Crawford NR. Biomechanical contribution of the rib cage to thoracic stability. Spine (Phila Pa 1976). 2011;36(26):E1686–93. https://doi.org/10.1097/BRS.0b013e318219ce84.

    Article  PubMed  Google Scholar 

  3. Liebsch C, Graf N, Wilke HJ. In vitro analysis of kinematics and elastostatics of the human rib cage during thoracic spinal movement for the validation of numerical models. J Biomech. 2019;94:147–57. https://doi.org/10.1016/j.jbiomech.2019.07.041.

    Article  PubMed  Google Scholar 

  4. O’Brien MF, Kuklo TR, Blanke KM, Lenke LG. Spinal Deformity Study Group radiographic measurement manual. Medtronic Sofamor Danek 2008;6(1):1–10.

    Google Scholar 

  5. Lafage R, Steinberger J, Pesenti S, et al. Understanding thoracic spine morphology, shape, and proportionality. Spine (Phila Pa 1976). 2020;45(3):149–57. https://doi.org/10.1097/BRS.0000000000003227.

    Article  PubMed  Google Scholar 

  6. Lee DG. Biomechanics of the thorax – research evidence and clinical expertise. J Man Manip Ther. 2015;25(3):128–38.

    Article  CAS  Google Scholar 

  7. McCarthy C. Combined movement theory: rational mobilization and manipulation of the vertebral column. Elsevier. 2010;13(10):165–78.

    Google Scholar 

  8. Aeby CT. Die Altersverschiedenheiten Der Menschlichen Wirbelsäule. Arch Anat Physiol. 1879;10:77.

    Google Scholar 

  9. Shillingford JN, Lin JD, Lehman Jr. RA. Biomechanics of the thoracic spinal column. eBook Collection (EBSCOhost) 2020;2:E10–E14.

    Google Scholar 

  10. Panjabi MM, White AA 3rd. Basic biomechanics of the spine. Neurosurgery. 1980;7(1):76–93. https://doi.org/10.1227/00006123-198007000-00014.

    Article  CAS  PubMed  Google Scholar 

  11. Wilke HJ, Grundler S, Ottardi C, Mathew CE, Schlager B, Liebsch C. In vitro analysis of thoracic spinal motion segment flexibility during stepwise reduction of all functional structures. Eur Spine J. 2020;29(1):179–85. https://doi.org/10.1007/s00586-019-06196-7.

    Article  PubMed  Google Scholar 

  12. Dubousset J. Biomechanics of the spine during growth. Biomech Biomater Orthop. 2004;22:255–81. https://doi.org/10.1007/978-1-4471-3774-0_27.

    Article  Google Scholar 

  13. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976). 1983;8(8):817–31. https://doi.org/10.1097/00007632-198311000-00003.

    Article  CAS  PubMed  Google Scholar 

  14. Stemper BD, Board D, Yoganandan N, Wolfla CE. Biomechanical properties of human thoracic spine disc segments. J Craniovertebr Junction Spine. 2010;1(1):18–22. https://doi.org/10.4103/0974-8237.65477.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oxland TR. A history of spine biomechanics. Focus on 20th century progress. Unfallchirurg. 2015;118(Suppl 1):80–92. https://doi.org/10.1007/s00113-015-0087-7.

    Article  PubMed  Google Scholar 

  16. Lubelski D, Healy AT, Mageswaran P, Benzel EC, Mroz TE. Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis. Spine J. 2014;14(9):2216–23. https://doi.org/10.1016/j.spinee.2014.03.026.

    Article  PubMed  Google Scholar 

  17. Gattozzi DA, Friis LA, Arnold PM. Surgery for traumatic fractures of the upper thoracic spine (T1-T6). Surg Neurol Int. 2018;9:231. https://doi.org/10.4103/sni.sni_273_18. Published 2018 Nov 19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Suk SI, Kim WJ. Biomechanics of posterior instrumentation for spinal arthrodesis. Biomech Biomater Orthop. 2016;35:437–67. https://doi.org/10.1007/978-1-84882-664-9_35.

    Article  Google Scholar 

  19. Suk SI, Kim WJ. Pedicle screw fixation in thoracic or thoracolumbar burst fractures. Biomech Biomater Orthop. 2016;33:405–27. https://doi.org/10.1007/978-1-84882-664-9_33.

    Article  Google Scholar 

  20. Hongo M, Ilharreborde B, Gay RE, et al. Biomechanical evaluation of a new fixation device for the thoracic spine. Eur Spine J. 2009;18(8):1213–9. https://doi.org/10.1007/s00586-009-0999-4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez-Martinez NG, Savardekar A, Nottmeier EW, et al. Biomechanics of transvertebral screw fixation in the thoracic spine: an in vitro study. J Neurosurg Spine. 2016;25(2):187–92. https://doi.org/10.3171/2015.11.SPINE15562.

    Article  PubMed  Google Scholar 

  22. McLain RF. The biomechanics of long versus short fixation for thoracolumbar spine fractures. Spine (Phila Pa 1976). 2006;31(11 Suppl):S70–S104. https://doi.org/10.1097/01.brs.0000218221.47230.dd.

    Article  PubMed  Google Scholar 

  23. Geremia GK, Kim KS, Cerullo L, Calenoff L. Complications of sublaminar wiring. Surg Neurol. 1985;23(6):629–35. https://doi.org/10.1016/0090-3019(85)90017-5.

    Article  CAS  PubMed  Google Scholar 

  24. Patil SS, Bhojaraj SY, Nene AM. Safety and efficacy of spinal loop rectangle and sublaminar wires for osteoporotic vertebral compression fracture fixation. Asian J Neurosurg. 2017;12(3):436–40. https://doi.org/10.4103/1793-5482.175648.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lea-Plaza C, Vin Vivo E, Silveri A, Bermudez W, Santo J, Carreras O. Surgical correction of scoliosis with a new three- dimensional device, the Lea-Plaza frame: a preliminary report. Spine (Phila Pa 1976). 1992;17(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  26. Stinchfield T, Vadapalli S, Pennington Z, et al. Improvement in vertebral endplate engagement following anterior column reconstruction using a novel expandable cage with self-adjusting, multiaxial end cap. J Clin Neurosci. 2019;67:249–54. https://doi.org/10.1016/j.jocn.2019.06.017.

    Article  PubMed  Google Scholar 

  27. Marchi L, Abdala N, Oliviera L, et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion clinical article. J Neurosurg Spine. 2013;19(1):110–8.

    Article  PubMed  Google Scholar 

  28. Grob D, Daehn S, Mannion AF. Titanium mesh cages (TMC) in spine surgery. Eur Spine J. 2005;14(3):211–21. https://doi.org/10.1007/s00586-004-0748-7.

    Article  PubMed  Google Scholar 

  29. Liebsch C, Vogt M, Jansen JU, Wilke HJ. In vitro comparison of personalized 3D printed versus standard expandable titanium vertebral body replacement implants in the mid-thoracic spine using entire rib cage specimens. Clin Biomech. 2020;78:105070. https://doi.org/10.1016/j.clinbiomech.2020.105070.

    Article  Google Scholar 

  30. Kose K, Inanmaz M, Isik C, et al. Short segment pedicle screw instrumentation with an index level screw and cantilevered hyperlordotic reduction in the treatment of type-A fractures of the thoracolumbar spine. Bone Joint J. 2014;96-B(4):541–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ebelke DK, Asher MA, Neff JR, Krake DP. Survivorship analysis of VSP instrumentation in the treatment of thoracolumbar and lumbar burst fractures. Spine. 1991;16:428–92.

    Article  Google Scholar 

  32. Liebsch C, Kocak T, Aleinikov V, Kerimbayev T, et al. Thoracic spinal stability and motion behavior are affected by the length of posterior instrumentation after vertebral body replacement, but not by the surgical approach type: an in vitro study with entire rib cage specimens. Front Bioeng Biotechnol. 2020;8:572. https://doi.org/10.3389/fbioe.2020.00572.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Slone RM, MacMillan M, Montgomery WJ. Spinal fixation: complications of spinal instrumentation. Radiographics. 1993;3:797–816.

    Article  Google Scholar 

  34. Gayet LE, Pries P, Hamcha H, Clarac JP, Texereau J. Biomechanical study and digital modeling of traction resistance in posterior thoracic implants. Spine. 2002;27:707–14. https://doi.org/10.1097/00007632-200204010-00007.

    Article  PubMed  Google Scholar 

  35. Faraj AA, Webb JK. Early complications of spinal pedicle screw. Eur Spine J. 1997;6(5):324–6. https://doi.org/10.1007/BF01142678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012;71(4):862–7. https://doi.org/10.1227/NEU.0b013e3182672aab.

    Article  PubMed  Google Scholar 

  37. Tang C, Li GZ, Kang M, Liao YH, Tang Q, Zhong J. Revision surgery after rod breakage in a patient with occipitocervical fusion: a case report. Medicine (Baltimore). 2018;97(15):e0441. https://doi.org/10.1097/MD.0000000000010441.

    Article  PubMed  Google Scholar 

  38. Berjano P, Bassani R, Casero G, Sinigaglia A, Cecchinato R, Lamartina C. Failures and revisions in surgery for sagittal imbalance: analysis of factors influencing failure. Eur Spine J. 2013;22(Suppl 6):S853–8. https://doi.org/10.1007/s00586-013-3024-x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hammad, A., Goel, V., Ahmad, A.A. (2023). Biomechanics of the Thoracic Spine. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_114

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_114

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics