Skip to main content

Biomechanics of the Cervical Spine

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 127 Accesses

Abstract

The head neck region consists of seven cervical vertebrae, which has unique anatomy and kinematics accommodating the needs of a highly mobile unit between the head and torso while protecting the spinal cord from injury. Any disturbance of anatomy and mechanical properties can lead to clinical symptoms.

Due to the complexity of kinematics, generally the cervical spine is divided into upper complex as C0-1-2 (occipito-atlanto-axial joint) and lowers complex C3-7 (typical cervical vertebrae). The upper complex is further subdivided into two motion segments (C0-1 and C1-2). The movements of individual vertebrae are coupled with the others. By summing up the contributions of each motion segment we can account for total range of motion of cervical spine.

A preload always exists on vertebra while the person sits or stands, for example, at C6 vertebra which acts as fulcrum the whole load on the top will be acting so that the center of gravity of the entire top is lined anterior to it. This means that the erect position of the head is held by the muscular force from behind. Biomechanically normal posture is one where there is no undue stretching of ligaments, annulus, capsules, or of the soft tissues, and no undue demand on muscle activity, no undue load bearing by the disc.

Clinical cervical instability is the loss of ability to maintain normal relationship between vertebrae under physiological loads. Abnormal loads can produce varying degrees of derangement leading to pain and deformity. Neck pain is a common musculoskeletal problem experienced by many in the community. Alterations of cervical spine mechanics that compromise the stabilizing mechanisms of the cervical spine due to injury or degenerative conditions can cause pain. Accurate measurement of intervertebral kinematics of the cervical spine through use of static and dynamic X-rays can support the diagnosis of widespread diseases related to neck pain. Functional radiography is the clinical standard to detect segmental instability.

When symptoms of cervical radiculopathy persist or worsen despite nonsurgical treatment, surgical intervention in the form of laminoplasty or spinal fusion or arthroplasty may be recommended. The primary goal of surgery is to improve neck pain, maintain stability, and preserve range of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarig Bahat H, Weiss PL, Laufer Y. The effect of neck pain on cervical kinematics, as assessed in a virtual environment. Arch Phys Med Rehabil. 2010;91:1884–90.

    Article  PubMed  Google Scholar 

  2. Bovim G, Schrader H, Sand T. Neck pain in the general population. Spine (Phila Pa 1976). 1994;19:1307–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cote P, Cassidy JD, Carroll LJ, et al. The annual incidence and course of neck pain in the general population: a population-based cohort study. Pain. 2004;112:267–73.

    Article  PubMed  Google Scholar 

  4. Panjabi MM, Dutancaeau J, Goel V, et al. Cervical human vertebrae. Quantitative three dimensional anatomy of the middle and lower regions. Spine (Phila Pa 1976). 1991;16:861–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ng HW, Teo EC, Lee KK, Qiu TX. Finite element analysis of cervical spinal instability under physiologic loading. J Spinal Disord Tech. 2003;16(1):55–65.

    Article  PubMed  Google Scholar 

  6. Oda T, Panjabi MM, Crisco JJIII, Oxland TR, Katz L, Nolte LP. Experimental study of atlas injuries. II. Relevance to clinical diagnosis and treatment. Spine (Phila Pa 1976). 1991;16(10 Suppl):S466–73.

    Article  CAS  PubMed  Google Scholar 

  7. Lopez AJ, Scheer JK, Leibl KE, Smith ZA, Dlouhy BJ, Dahdaleh NS. Anatomy and biomechanics of the craniovertebral junction. Neurosurg Focus. 2015;38(4):1–8.

    Article  Google Scholar 

  8. Clark CR, White AAIII. Fractures of the dens. A multicenter study. J Bone Joint Surg Am. 1985;67:1340–8.

    Article  CAS  PubMed  Google Scholar 

  9. Dvorak J, Schneider E, Saldinger P, Rahn B. Biomechanics of the craniocervical region: the alar and transverse ligaments. J Orthop Res. 1988;6:452–61.

    Article  CAS  PubMed  Google Scholar 

  10. Tubbs RS, Kelly DR, Humphrey ER, Chua GD, Shoja MM, Salter EG, et al. The tectorial membrane: anatomical, biomechanical, and histological analysis. Clin Anat. 2007;20:382–6.

    Article  PubMed  Google Scholar 

  11. Parke WW. The vascular relations of the upper cervical vertebrae. Orthop Clin North Am. 1978;9:879–89.

    Article  CAS  PubMed  Google Scholar 

  12. Panjabi M, Dvorak J, Duranceau J, Yamamoto I, Gerber M, Rauschning W, et al. Three-dimensional movements of the upper cervical spine. Spine. (Phila Pa1976). 1988;13:726–30.

    Article  CAS  PubMed  Google Scholar 

  13. Tubbs RS, Hallock JD, Radcliff V, et al. Ligaments of the craniocervical junction. J Neurosurg Spine. 2011;14:697–709.

    Article  PubMed  Google Scholar 

  14. Debernardi A, D’Aliberti G, Talamonti G, Villa F, Piparo M, Collice M. The craniovertebral junction area and the role of the ligaments and membranes. Neurosurgery. 2011;68(2):291–301.

    Article  PubMed  Google Scholar 

  15. Goel V, Clark C, Gallaes K, Liu Y. Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J Biomech. 1988;21(8):673–80.

    Article  CAS  PubMed  Google Scholar 

  16. Dvorak J, Panjabi M, Novotny J, Antinnes J. In vivo flexion/extension of the normal cervical spine. J Orthop Res. 1991;9(6):828–34.

    Article  CAS  PubMed  Google Scholar 

  17. Iai H, Moriya H, Goto S, Takahashi K, Tamaki T. Three-dimensional motion analysis of the upper cervical spine during axial rotation. Spine, (Phila Pa 1976). 1993;18(16):2388–92.

    Article  CAS  PubMed  Google Scholar 

  18. Wolfla CE. Anatomical, biomechanical, and practical considerations in posterior occipitocervical instrumentation. Spine J. 2006;6(1):S225–32.

    Article  Google Scholar 

  19. Panjabi M, Dvorak J, Crisco JJIII, et al. Effects of alar ligament transection on upper cervical spine rotation. J Orthop Res. 1991;9:584–93.

    Article  CAS  PubMed  Google Scholar 

  20. Ochalski PG, Spiro RM, Fabio A, Kassam AB, Okonkwo DO. Fractures of the clivus: a contemporary series in the computed tomography era. Neurosurgery. 2009;65(6):1063–9.

    Article  PubMed  Google Scholar 

  21. Chaput CD, Walgama J, Torres E, Dominguez D, Hanson J, Song J, et al. Defining and detecting missed ligamentous injuries of the occipitocervical complex. Spine (Phila Pa 1976). 2011;36(9):709–14.

    Article  PubMed  Google Scholar 

  22. Alcelik I, Manik KS, Sian PS, Khoshneviszadeh SE. Occipital condylar fractures. Review of the literature and case report. J Bone Joint Surg (Br). 2006;88(5):665–9.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures. Spine (Phila Pa 1976). 1988;13(7):731–6.

    Article  CAS  PubMed  Google Scholar 

  24. Vishteh A, Crawford N, Melton M, Spetzler R, Sonntag V, Dickman CA. Stability of the craniovertebral junction after unilateral occipital condyle resection: a biomechanical study. J Neurosurg Spine. 1990;90(1):91–8.

    Article  Google Scholar 

  25. Clark JG, Abdullah KG, Mroz TE, Steinmetz MP. Biomechanics of the craniovertebral junction. In: Klika V, editor. Biomechanics in applications. IntechOpen. 2011;p. 189–204. https://doi.org/10.5772/21253.

  26. Anderson LD, D’Alonzo RT. Fractures of the odontoid process of the axis. J Bone Joint Surg Am. 1974;56(8):1663–74.

    Article  CAS  PubMed  Google Scholar 

  27. Dickman CA, Crawford NR, Brantley AG, et al. Biomechanical effects of transoral odontoidectomy. Neurosurgery. 1995;36:1146–52.

    Article  CAS  PubMed  Google Scholar 

  28. Dickman CA, Lekovic CV. Biomechanical considerations for stabilization of the craniovertebral junction. Clin Neurosurg. 2005;52:205–13.

    PubMed  Google Scholar 

  29. Lee C, Woodring JH. Unstable Jefferson variant atlas fractures: an unrecognized cervical injury. AJNR Am J Neuroradiol. 1991;12(6):1105–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Greene KA, Dickman CA, Marciano FF, Drabier JB, Hadley MN, Sonntag VK. Acute axis fractures. Analysis of management and outcome in 340 consecutive cases. Spine (Phila Pa 1976). 1997;22(16):1843–52.

    Article  CAS  PubMed  Google Scholar 

  31. Mead LB II, Millhouse PW, Krystal J, Vaccaro AR. C1 fractures: a review of diagnoses, management options, and outcomes. Curr Rev Musculoskelet Med. 2016;9:255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan J, Huang D, Hao D, et al. Occipitocervical fusion: fix to C2 or C3? Clin Neurol Neurosurg. 2014;127:134–9.

    Article  PubMed  Google Scholar 

  33. Bosco A, Aleem I, La Marca F. Occipital condyle screws: indications and technique. J Spine Surg. 2020;6(1):156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Helgeson MD, Lehman RA, Sasso RC, Dmitriev AE, Mack AW, Riew KD. Biomechanical analysis of occipitocervical stability afforded by three fixation techniques. Spine J. 2011;11(3):245–50.

    Article  PubMed  Google Scholar 

  35. Hurlbert RJ, Crawford NR, Choi WG, et al. A biomechanical evaluation of occipitocervical instrumentation: screw compared with wire fixation. J Neurosurg Spine. 1999;90:84–90.

    Article  CAS  Google Scholar 

  36. Oda I, Abumi K, Sell LC, et al. Biomechanical evaluation of five different occipito-atlanto-axial fixation techniques. Spine (Phila Pa 1976). 1999;24:2377–82.

    Article  CAS  PubMed  Google Scholar 

  37. Lehman RAJ, Dmitriev AE, Wilson KW. Biomechanical analysis of the C2 intralaminar fixation technique using a cross-link and offset connector for an unstable atlantoaxial joint. Spine J. 2012;12:151–6.

    Article  PubMed  Google Scholar 

  38. Uribe JS, Ramos E, Youssef AS, et al. Craniocervical fixation with occipital condyle screws: biomechanical analysis of a novel technique. Spine (Phila Pa 1976). 2010;35:931–8.

    Article  PubMed  Google Scholar 

  39. Mestdagh H. Morphological aspects and biomechanical properties of the vertebroaxial joint (C2–C3). Acta Morphol Neerl Scand. 1976;14(1):19–30.

    CAS  PubMed  Google Scholar 

  40. Duggal N, Chamberlain RH, Perez-Garza LE, Espinoza-Larios A, Sonntag VKH, Crawford NR. Hangman’s fracture: a biomechanical comparison of stabilization techniques. Spine (Phila Pa 1976). 2007;32:182–7.

    Article  PubMed  Google Scholar 

  41. Park JH, Kim SH, Cho KH. Clinical outcomes of posterior C2–C3 fixation for unstable Hangman’s fracture compared with posterior C1–C3 fusion. Korean J Spine. 2014;11(2):33–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Panjabi MM, Lydon C, Vasavada A, Grob D, Crisco JJ, Dvorak J. On the understanding of clinical instability. Spine (Phila Pa 1976). 1994;23:2642–50.

    Article  Google Scholar 

  43. Olson KA, Joder D. Diagnosis and treatment of cervical spine clinical instability. J Orthop Sports Phys Ther. 2001;31(4):194–206.

    Article  CAS  PubMed  Google Scholar 

  44. Van Mameren H, Drukker J, Sanches H, Beursgens J. Cervical spine motion in the sagittal plane (I) range of motion of actually performed movements, an X-ray cinematographic study. Eur J Morphol. 1990;28:47–68.

    PubMed  Google Scholar 

  45. Swartz EE, Floyd RT, Cendoma M. Cervical spine functional anatomy and the biomechanics of injury due to compressive loading. J Athl Train. 2005;40(3):155–61.

    PubMed  PubMed Central  Google Scholar 

  46. Nightingale RW, McElhaney JH, Richardson WJ, Myers BS. Dynamic responses of the head and cervical spine to axial impact loading. J Biomech. 1996;29:307–18.

    Article  CAS  PubMed  Google Scholar 

  47. Penning L. Kinematics of cervical spine injury: a functional radiological hypothesis. Eur Spine J. 1995;4:126–32.

    Article  CAS  PubMed  Google Scholar 

  48. Oxland TR, Panjabi MM. The onset and progression of spinal injury: a demonstration of neutral zone sensitivity. J Biomech. 1992;25:1165–72.

    Article  CAS  PubMed  Google Scholar 

  49. Van Toen CY. Biomechanics of cervical spine and spinal cord injury under combined axial compression and lateral bending loading. Thesis for Univ of British Columbia, Vancouver. (2013). https://doi.org/10.14288/1.0072137.

  50. Wiguna GLNAA, Magetsari R, Noor Z, Suyitno S, Nindrea RD. Comparative effectiveness and functional outcome of open-door versus French-door laminoplasty for multilevel cervical myelopathy: a meta-analysis. Open Access Maced J Med Sci. 2019;7(19):3348–52.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luo W, Li Y, Zhao J, Gu R, Jiang R, Lin F. Open-versus French-door laminoplasty for the treatment of cervical multilevel compressive myelopathy: a meta-analysis. World Neurosurg. 2018;117:129–36.

    Article  PubMed  Google Scholar 

  52. Puttlitz CM, Deviren V, Smith JA, Kleinstueck FS, Tran QNH, Thurlow RW, et al. Biomechanics of cervical laminoplasty: kinetic studies comparing different surgical techniques, temporal effects and the degree of level involvement. Euro Spine J. 2004;13(3):213–21.

    Article  Google Scholar 

  53. Baba H, Maezawa Y, Furusawa N, Imura S, Tomita K. Flexibility and alignment of the cervical spine after laminoplasty for spondylotic myelopathy. A radiographic study. Int Orthop. 1995;19:116–21.

    Article  CAS  PubMed  Google Scholar 

  54. Nagamoto Y, Iwasaki M, Sugiura T, Fujimori T, Matsuo Y, Kashii M, et al. In vivo 3D kinematic changes in the cervical spine after laminoplasty for cervical spondylotic myelopathy. J Neurosurg Spine. 21:417–24.

    Google Scholar 

  55. Takeuchi K, Yokoyama T, Ono A, Numasawa T, Wada K, Kumagai G, et al. Limitations of activities of daily living accompanying reduced neck mobility after cervical laminoplasty. Arch Orthop Trauma Surg. 2007;127:475–80.

    Article  PubMed  Google Scholar 

  56. Aleksanderek I, Lazaro BCR, Fink M, Robin D, Dugal N. Analysis of in vivo kinematics of 3 different cervical devices: Bryan disc, ProDisc-C, and Prestige LP disc. J Neurosurg Spine. 2011;15(6):630–5.

    Article  Google Scholar 

  57. Reitman CA, Mauro KM, Nguyen L. Intervertebral motion between flexion and extension in asymptomatic individuals. Spine. 2004;24:2832–43.

    Article  Google Scholar 

  58. Gandhi AA, Kode S, DeVries NA. Biomechanical analysis of cervical disc replacement and fusion using single level, two level and hybrid constructs. Spine (Phila Pa 1976). 2015;40:1578–85. https://doi.org/10.1097/BRS.0000000000001044.

    Article  PubMed  Google Scholar 

  59. Cunningham BW, Hu N, Zorn CM, McAfee PC. Biomechanical comparison of single- and two level cervical arthroplasty versus arthrodesis: effect on adjacent – level spinal kinematics. Spine J. 2010;10(4):341–9.

    Article  PubMed  Google Scholar 

  60. Gore DR, Sepic SB. Anterior discectomy and fusion for painful cervical disc disease: a report of 50 patients with an average follow-up of 21 years. Spine (Phila Pa 1976). 1998;23:2047–51.

    Article  CAS  PubMed  Google Scholar 

  61. Li JF, Zheng QX, Guo XD, et al. Anterior surgical options for the treatment of cervical spondylotic myelopathy in a long-term follow-up study. Arch Orthop Trauma Surg. 2013;133(6):745–51.

    Article  PubMed  Google Scholar 

  62. Fernandes PC, Fernandes PR, Folgado JO, Levy Melancia J. Biomechanical analysis of the anterior cervical fusion. Comput Methods Biomech Biomed Eng. 2012;15(12):1337–46.

    Article  CAS  Google Scholar 

  63. Ouyang P, Li J, He X, Dong H, Zang Q, et al. Biomechanical comparison of 1-level corpectomy and 2-level discectomy for cervical spondylotic myelopathy: a finite element analysis. Med Sci Monit. 2020;26:e919270-1–e919270-11.

    Article  Google Scholar 

  64. Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23–9.

    Article  CAS  PubMed  Google Scholar 

  65. Tsitsopoulos PP, Voronov LI, Zindrick MR, Carandag G, Havey RM, et al. Biomechanical stability analysis of a stand-alone cage, static and rotational-dynamic plate in a two-level cervical fusion construct. Orthop Surg. 2017;9(3):290–5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Anderson PA, Sasso RC, Hipp J, Norvell DC, Raich A, Hashimoto R. Kinematics of the cervical adjacent segments after disc arthroplasty compared with anterior discectomy and fusion: a systematic review and meta-analysis. Spine (Phila PA 1976). 2012;37(22 Suppl):S85–95.

    Article  PubMed  Google Scholar 

  67. Pisano A, Helgeson M. Cervical disc replacement surgery: biomechanical properties, postoperative motion, and postoperative activity levels. Curr Rev Musculoskelet Med. 2017;10:177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhong ZM, Zhu AY, Zhuang JS, Wu Q, Chen JT. Reoperation after cervical disc arthroplasty versus anterior cervical discectomy and fusion: a meta-analysis. Clin Orthop Relat Res. 2016;474(5):1307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jia Z, Mo Z, Ding F, He Q, Fan Y, Ruan D. Hybrid surgery for multilevel cervical degenerative disc diseases: a systematic review of biomechanical and clinical evidence. Eur Spine J. 2014;23:1619–32. https://doi.org/10.1007/s00586-014-3389-5.

    Article  PubMed  Google Scholar 

  70. Chen C, Yuchi CX, Gao Z, Ma X, Zhao D, et al. Comparative analysis of the biomechanics of the adjacent segments after minimally invasive cervical surgeries versus anterior cervical discectomy and fusion: a finite element study. J Orthop Translat. 2020;23:107–12.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smit TH, van Tunen MS, van der Veen AJ, Kingma I, van Dieën JH. Quantifying intervertebral disc mechanics: a new definition of the neutral zone. BMC Musculoskelet Disord. 2011;12:38. https://doi.org/10.1186/1471-2474-12-38. PMID: 21299900; PMCID: PMC3041726

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guo Z, Cui W, Sang DC, Sang HP, Liu BG. Clinical relevance of cervical kinematic quality parameters in planar movement. Orthop Surg. 2019;11(2):167–75. https://doi.org/10.1111/os.12435. Epub 2019 Mar 18. PMID: 30884156; PMCID: PMC6594496

    Article  PubMed  PubMed Central  Google Scholar 

  73. White AA III, Panjabi MM. Clinical Biomechanics of the Spine, 2nd ed. Baltimore, MD: Lippincott Williams & Wilkins; 1990.

    Google Scholar 

  74. Dvorak J, Froehlich D, Penning L, Baumgartner H, Panjabi MM. Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine. 1988;13:748–755.

    Google Scholar 

  75. Penning L. Normal movement of the cervical spine. Am J Roentgenol. 1978;130:317–26.

    Article  CAS  Google Scholar 

  76. Dvorak J, Panjabi MM, Gerber M, Wichman W. CT-functional diagnostics of the rotatory instability of the upper cervical spine. Spine. 1987;12:197–205.

    Google Scholar 

  77. White AA III, Panjabi MM. Update on the evaluation of instability of the lower cervical spine. Instr Course Lect 1987;36:513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Debnath, U.K. (2023). Biomechanics of the Cervical Spine. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_113

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_113

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics