Skip to main content

Lumbar and Lumbo-sacral Spinal Implants

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology
  • 22 Accesses

Abstract

Lumbar spine forms the connecting link between upper body and pelvis. It has the unique responsibility of providing spinal mobility and stability. Lumbo-sacral spine is affected due to various pathologies (E.g., infection, trauma, tumour, ageing, etc.). In last five decades spine surgery has progressed significantly in terms of implantology. Spinal fixation using various implants forms an integral and critical component of spine surgery. Spine surgery can be done through different approaches according to pathology and surgeons preference. Most common and extensile approach is posterior approach. Posterior approach has flourished as it has the advantage of direct access to neural structures and fixation through pedicles. With advanced surgical knowledge and technique posterior approach can be used to access anterior middle and posterior columns. Anterior and lateral spinal implants also can be put through minimally invasive spine techniques. The last two decades saw new found enthusiasm with lateral spinal techniques. Lumbo-pelvic fixation always poses a challenge as it is a transition zone from lordotic lumbar spine to kyphotic sacrum. New implantology and surgical anatomical knowledge has been used to overcome these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.fda.gov/medical-devices/products-and-medical-procedures/implants-and-prosthetics

  2. Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S. Development of low rigidity β-type titanium alloy. Materials transaction. 2002;43(12):2970–7.

    Article  CAS  Google Scholar 

  3. Harrington PR. Treatment of scoliosis. JBJS. 1962;44:591–634.

    Article  Google Scholar 

  4. Aaro S, Dahlborn M. The effect of Harrington instrumentation on the longitudinal axis rotation of the apical vertebra and on the spinal and rib-cage deformity in idiopathic scoliosis studied by computer tomography. Spine (Phila Pa 1976). 1982;7(5):456–62. https://doi.org/10.1097/00007632-198209000-00009.

    Article  CAS  PubMed  Google Scholar 

  5. Luque ER. Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res. 1982;163:192–8.

    Article  Google Scholar 

  6. Cotrel Y, Dubousset J. New segmental posterior instrumentation of the spine. Ortho Trans. 1985;9:118.

    Google Scholar 

  7. Roy-Camille R, Roy-Camille M, Demeulenaere C. Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med. 1970;78:1447–8.

    CAS  Google Scholar 

  8. Steffee, Arthur, D.*; Robert, S. Biscup.**; Daniel, Sitkowskj J.† Segmental spine plates with pedicle screw fixation a new internal fixation device for disorders of the lumbar and thoracolumbar spine, Clinical Orthopaedics and Related Research: 1986 203 45–53.

    Article  Google Scholar 

  9. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10–23.

    Article  CAS  PubMed  Google Scholar 

  10. Liljenqvist U, Hackenberg L, Link T, Halm H. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg. 2001;67(2):157–63.

    CAS  PubMed  Google Scholar 

  11. Defino H, Galbusera F, Wilke HJ. Lumbar spine online text book, section 11, chapter 9: pedicle screw fixation and design.wheeless online.

    Google Scholar 

  12. Shea TM, Laun J, Gonzalez-Blohm SA, Doulgeris JJ, Lee WE, Aghayev K, Vrionis FD. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. BioMed Research International. 2014:Article ID 748393, 15 pages. https://doi.org/10.1155/2014/748393.

  13. Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res. 1992;284:34–46.

    Article  Google Scholar 

  14. Brasiliense LB, Lazaro BC, Reyes PM, Newcomb AG, Turner JL, Crandall DG, Crawford NR. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine J. 2013;13(8):947–56.

    Article  PubMed  Google Scholar 

  15. Shah KN, Walker G, Koruprolu SC, Daniels AH. Biomechanical comparison between titanium and cobalt chromium rods used in a pedicle subtraction osteotomy model. Orthop Rev. 2018;10(1):7541. https://doi.org/10.4081/or.2018.7541.

    Article  Google Scholar 

  16. Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X. Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. European Spine Journal. 2010;19(2):316–24. https://doi.org/10.1007/s00586-009-1191-6.

    Article  PubMed  Google Scholar 

  17. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neuro-Chirurgie. 1987;33(2):166.

    CAS  PubMed  Google Scholar 

  18. Chen LH, Tai CL, Lee DM, et al. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord. 2011;12:33. Published 2011 Feb 1. https://doi.org/10.1186/1471-2474-12-33.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen YL, Chen WC, Chou CW, Chen JW, Chang CM, Lai YS, et al. Biomechanical study of expandable pedicle screw fixation in severe osteoporotic bone comparing with conventional and cement-augmented pedicle screws. Med Eng Phys. 2014;36(11):1416–20.

    Article  PubMed  Google Scholar 

  20. Harrop JS, Youssef JA, Maltenfort M, Vorwald P, Jabbour P, Bono CM, et al. Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine. 2008;33(15):1701–7.

    Article  PubMed  Google Scholar 

  21. Khoueir P, Kim KA, Wang MY. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):1–8.

    Article  Google Scholar 

  22. Graf H. Evaluation of the therapeutic effect of the Graf stabilisation system. In Second Meeting, European Spine Society, Rome, Italy, 1991. October 1991.

    Google Scholar 

  23. Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J. 2002;11(2):S170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Senegas J. Widening of the lumbar vertebral canal as an alternative to laminectomy, in the treatment of lumbar stenosis. Fr J Orthop Surg. 1988;2:93–9.

    Google Scholar 

  25. Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine. 2003;28(19):2192–7.

    Article  PubMed  Google Scholar 

  26. Richards JC, Majumdar S, Lindsey DP, Beaupré GS, Yerby SA. The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine. 2005;30(7):744–9.

    Article  PubMed  Google Scholar 

  27. Swanson KE, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA. The effects of an interspinous implant on intervertebral disc pressures. Spine. 2003;28(1):26–32.

    Article  PubMed  Google Scholar 

  28. Wilke HJ, Drumm J, Häussler K, Mack C, Steudel WI, Kettler A. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J. 2008;17(8):1049–56.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ. Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech. 2008;23(2):242–7.

    Article  CAS  Google Scholar 

  30. Wang JC, Spenciner D, Robinson JC. SPIRE spinous process stabilization plate: biomechanical evaluation of a novel technology: invited submission from the joint section meeting on disorders of the spine and peripheral nerves. J Neurosurg Spine. 2006;4(2):160–4.

    Article  CAS  PubMed  Google Scholar 

  31. McAfee P, Khoo LT, Pimenta L, Capuccino A, Coric D, Hes R, et al. Treatment of lumbar spinal stenosis with a total posterior arthroplasty prosthesis: implant description, surgical technique, and a prospective report on 29 patients. Neurosurg Focus. 2007;22(1):1–11.

    Article  Google Scholar 

  32. Kim YJ, Lenke LG. Thoracic pedicle screw placement: free-hand technique. Neurol India. 2005;53(4):512.

    Article  PubMed  Google Scholar 

  33. Been HD, Kalkman CJ, Traast HS, de Visser O, Bram W. Neurologic injury after insertion of laminar hooks during Cotrel-Dubousset instrumentation. Spine. 19(12):1402–5.

    Google Scholar 

  34. Doran SE, Papadopoulos SM, Miller LD. Internal fixation of the spine using a braided titanium cable: clinical results and postoperative magnetic resonance imaging. Neurosurgery. 1996;38(3):493–7. https://doi.org/10.1097/00006123-199603000-00014.

    Article  CAS  PubMed  Google Scholar 

  35. Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop. 2016;14(1):134–6. https://doi.org/10.1016/j.jor.2016.10.029.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hall JE. Dwyer instrumentation in anterior fusion of the spine. JBJS. 1981;63(7):1188–90.

    Article  CAS  Google Scholar 

  37. DeBowes RM, Grant BD, Bagby GW, Gallina AM, Sande RD, Ratzlaff MH. Cervical vertebral interbody fusion in the horse: a comparative study of bovine xenografts and autografts supported by stainless steel baskets. Am J Vet Res. 1984;45(1):191–9.

    CAS  PubMed  Google Scholar 

  38. Dimar JR, Glassman SD, Burkus KJ, Carreon LY. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine. 2006;31(22):2534–9.

    Article  PubMed  Google Scholar 

  39. Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally disruptive anterior lumbar interbody fusion: Analysis of extreme lateral interbody fusion by computed tomography. SAS J. 2010;4(2):63–6. Published 2010 Jun 1. https://doi.org/10.1016/j.esas.2010.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orief T, Ramadan I, Seddik Z, Kamal M, Rahmany M, Takayasu M. Comparative evaluation of bone–filled Polymethylmethacrylate implant, autograft fusion, and Polyetheretherketone cervical cage fusion for the treatment of single–level cervical disc disease. Asian Journal of Neurosurgery. 2010;5(2):46.

    PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, Chen D. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22(7):1539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014;23(10):2150–5.

    Article  PubMed  Google Scholar 

  44. Gu Y, Zhang F, Lineaweaver WC, Zhang J, Jia L, Qi J, et al. In vivo study of hydroxyapatite-coated hat type cervical intervertebral fusion cage combined with IGF-I and TGF-β1 in the goat model. Clinical Spine Surgery. 2016;29(5):E267–75.

    Article  PubMed  Google Scholar 

  45. Kersten RF, van Gaalen SM, Arts MP, Roes KC, de Gast A, Corbin TP, Öner FC. The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol. BMC Musculoskelet Disord. 2014;15(1):1–8.

    Article  Google Scholar 

  46. Çagli S, Crawford NR, Sonntag VK, Dickman CA. Biomechanics of grade I degenerative lumbar spondylolisthesis. Part 2: treatment with threaded interbody cages/dowels and pedicle screws. J Neurosurg Spine. 2001;94(1):51–60.

    Article  Google Scholar 

  47. Miyazaki M, Tsumura H, Wang JC, Alanay A. An update on bone substitutes for spinal fusion. Eur Spine J. 2009;18(6):783–99. https://doi.org/10.1007/s00586-009-0924-x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hoffmann MF, Jones CB, Sietsema DL. Adjuncts in posterior lumbar spine fusion: comparison of complications and efficacy. Arch Orthop Trauma Surg. 2012;132(8):1105–10. https://doi.org/10.1007/s00402-012-1529-0.

    Article  PubMed  Google Scholar 

  49. Yan JL, Chen JF, Lee ST, Chang CN, Liao CC. Surgical outcomes of Cervios ChronOS cage implantation for degenerative cervical intervertebral disk disorder. Neurosurg Q. 2014;24(3):161–6.

    Article  Google Scholar 

  50. Matgé G, Leclercq TA. Rationale for interbody fusion with threaded titanium cages at cervical and lumbar levels. Results on 357 cases. Acta Neurochir. 2000;142(4):425–34. https://doi.org/10.1007/s007010050453.

    Article  PubMed  Google Scholar 

  51. Burkus JK, Schuler TC, Gornet MF, Zdeblick TA. Anterior lumbar interbody fusion for the management of chronic lower back pain: current strategies and concepts. Orthop Clin North Am. 2004;35(1):25–32. https://doi.org/10.1016/S0030-5898(03)00053-1.

    Article  PubMed  Google Scholar 

  52. Gödde S, Fritsch E, Dienst M, Kohn D. Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine (Phila Pa 1976). 2003;28(15):1693–9. https://doi.org/10.1097/01.BRS.0000083167.78853.D5.

    Article  PubMed  Google Scholar 

  53. Choi WS, Kim JS, Hur JW, Seong JH. Minimally invasive transforaminal lumbar interbody fusion using banana-shaped and straight cages: radiological and clinical results from a prospective randomized clinical trial. Neurosurgery. 2018;82(3):289–98. https://doi.org/10.1093/neuros/nyx212.

    Article  PubMed  Google Scholar 

  54. Bohm H, Harms J, Donk R, Zielke K. Correction and stabilization of angular kyphosis., Federal Republic of Germany. (1990).

    Google Scholar 

  55. Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F. A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine. 2005;30(23):2631–6.

    Article  PubMed  Google Scholar 

  56. McCord DH, Cunningham BW, Shono Y, Myers JJ, McAfee PC. Biomechanical analysis of lumbosacral fixation. Spine (Phila Pa 1976). 1992;17(8 Suppl):235–43.

    Article  Google Scholar 

  57. Shen FH, Mason JR, Shimer AL, Arlet VM. Pelvic fixation for adult scoliosis. Eur Spine J. 2013;22(Suppl 2):265–75.

    Article  Google Scholar 

  58. Santos ER, Sembrano JN, Mueller B, Polly DW. Optimizing iliac screw fixation: a biomechanical study on screw length, trajectory, and diameter. J Neurosurg Spine. 2011;14(2):219–25.

    Article  PubMed  Google Scholar 

  59. Kebaish KM. Sacropelvic fixation: techniques and complications. Spine (Phila Pa 1976). 2010;35(25):2245–51. https://doi.org/10.1097/BRS.0b013e3181f5cfae.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nath, C., Naskar, S. (2023). Lumbar and Lumbo-sacral Spinal Implants. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_110

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_110

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics