Skip to main content

Bioengineering of Spinal Implants

  • Reference work entry
  • First Online:
Handbook of Orthopaedic Trauma Implantology

Abstract

Bioengineering encompasses knowledge from several pure and applied sciences which are used in medical devices, diagnostic equipments, and various medicine-related fields. Though concept of bioengineering existed for many years, acknowledgement and significant advancements in this field started after 1950s. One of the main contributions of bioengineering in field of spine surgery has been towards development of various materials and designs of implants. For application of bioengineering principles in implantology, basic understanding of clinical biomechanics is necessary. Since late 1800s, spinal surgery implants have undergone a constant evolution with newer materials. Implant designs are being developed which are more biostable, biocompatible, and improve surgical outcomes in terms of motion preservation, early fusion, and longevity of implants. Different biomaterials and spinal implant designs with advantages and disadvantages for each material and their applications are discussed further in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovitz M. Biological engineering. Gale Virtual Reference Library; 2015. p. 10. ISBN 978-1-62968-5267.

    Google Scholar 

  2. Herold K, Bentley WE, Vossoughi J. The basics of bioengineering education. 26Th southern biomedical engineering conference. Maryland: College Park; 2010. p. 65. ISBN 9783642149979.

    Google Scholar 

  3. Medical & biological engineering. Oxford; New York: Pergamon Press. 1966–1976.

    Google Scholar 

  4. Yoganandan N, Arun MWJ, et al. Practical anatomy and fundamental biomechanics. In: Michael P, Edward C, editors. Benzels spine surgery. Elseiver; 2017. p. 58–82.

    Google Scholar 

  5. Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop. 2017;14:134.

    Article  PubMed  Google Scholar 

  6. Hadra BE. The classic: wiring of the vertebrae as a means of immobilization in fracture and Potts’ disease. Berthold E. Hadra. Med Times and Register, Vol 22, May 23, 1891. Clin Orthop Relat Res. 1975;112:4–8.

    Google Scholar 

  7. Yoshihara H. Rods in spinal surgery: a review of the literature. Spine J. 2013;13:1350–8.

    Article  PubMed  Google Scholar 

  8. Merriwether M, Shockey, R, inventors; Box cage for intervertebral body fusion. United States patent. US1,9990,436,593.1999, November 09.

    Google Scholar 

  9. Farrokhi MR, Nikoo Z, Gholami M, et al. Comparison between acrylic cage and polyetheretherketone (PEEK) cage in single-level anterior cervical discectomy and fusion: a randomized clinical trial. Clin Spine Surg. 2017;30:38–46.

    Article  PubMed  Google Scholar 

  10. McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18:1250–60.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  CAS  PubMed  Google Scholar 

  12. Kong F, Nie Z, Liu Z, et al. Developments of nano-TiO2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. J Photochem Photobiol B. 2018;187:120–5.

    Article  CAS  PubMed  Google Scholar 

  13. Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976). 2006;31:E992–8.

    Article  PubMed  Google Scholar 

  14. Chen Y, Wang X, Lu X, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22:1539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kersten R, Wu G, Pouran B, et al. Comparison of polyetheretherketone versus silicon nitride intervertebral spinal spacers in a caprine model. J Biomed Mater Res B Appl Biomater. 2019;107:688–99.

    Article  CAS  PubMed  Google Scholar 

  16. Kang H, Hollister SJ, La Marca F, et al. Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering. J Biomech Eng. 2013;135:101013–8.

    Article  PubMed  Google Scholar 

  17. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44-A:591–610.

    Article  CAS  PubMed  Google Scholar 

  18. Serhan H, Mhatre D, Newton P, et al. Would CoCr rods provide better correctional forces than stainless steel or titanium for rigid scoliosis curves? J Spinal Disord Tech. 2013;26:E70–4.

    Article  PubMed  Google Scholar 

  19. Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1968;1:105–20.

    Article  Google Scholar 

  20. Grob D, Benini A, Junge A, et al. Clinical experience with the Dynesyssemirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976). 2005;30:324–31.

    Article  PubMed  Google Scholar 

  21. Zhao X, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications. ActaBiomater. 2012;8:1990–7.

    CAS  Google Scholar 

  22. Tsuang FY, Hsieh YY, Kuo YJ, et al. Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: an in-vitro biomechanical evaluation and finite element analysis. PLoS One. 2017;12:e0188034.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hickey BA, Towriss C, Baxter G, et al. Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J. 2014;23(suppl 1):61–5.

    Article  PubMed Central  Google Scholar 

  24. Charroin C, Abelin-Genevois K, Cunin V, et al. Direct costs associated with the management of progressive early onset scoliosis: estimations based on gold standard technique or with magnetically controlled growing rods. Orthop Traumatol Surg Res. 2014;100:469–74.

    Article  CAS  PubMed  Google Scholar 

  25. Liu M-Y, Tsai T-T, Lai P-L, Hsieh M-K, Chen L-H, Tai C-L. Biomechanical comparison of pedicle screw fixation strength in synthetic bones: effects of screw shape, core/thread profile and cement augmentation. PLoS One. 2020;15(2):e0229328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hasegawa T, Inufusa A, Imai Y, et al. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005;5:239–43.

    Article  PubMed  Google Scholar 

  27. Wang H, Zhao Y, Mo Z, et al. Comparison of short-segment monoaxial and polyaxial pedicle screw fixation combined with intermediate screws in traumatic thoracolumbar fractures: a finite element study and clinical radiographic review. Clinics (Sao Paulo). 2017;72:609–17.

    Article  PubMed  Google Scholar 

  28. Pfeiffer M, Hoffman H, Goel VK, et al. In vitro testing of a new transpedicular stabilization technique. Eur Spine J. 1997;6:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKinley TO, McLain RF, Yerby SA, et al. The effect of pedicle morphometry on pedicle screw loading. A synthetic model. Spine (Phila Pa 1976). 1997;22:246–52.

    Article  PubMed  Google Scholar 

  30. Pfeiffer M, Gilbertson LG, Goel VK, et al. Effect of specimen fixation method on pullout tests of pedicle screws. Spine (Phila Pa 1976). 1996;21:1037–44.

    Article  CAS  PubMed  Google Scholar 

  31. Suda K, Abumi K, Ito M, et al. Local kyphosis reduces surgical outcomes of expansive open-door laminoplasty for cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2003;28:1258–62.

    Article  PubMed  Google Scholar 

  32. Sardhara J, Singh S, Mehrotra A, Bhaisora KS, Das KK, Srivastava AK, et al. Neuro-navigation assisted pre-psoas minimally invasive oblique lumbar interbody fusion (MI-OLIF): new roads and impediments. Neurol India. 2019;67:803–12.

    PubMed  Google Scholar 

  33. de Gauzy JS, Jouve J-L, et al. Use of the Universal Clamp in adolescent idiopathic scoliosis. Eur Spine J. 2014;23(Suppl 4):S446–51.

    Google Scholar 

  34. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10–23.

    Article  CAS  PubMed  Google Scholar 

  35. Betz RR, Kim J, D’Andrea LP, Mulcahey MJ, Balsara RK, Clements DH. An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis: a feasibility, safety, and utility study. Spine (Phila Pa1976). 2003;28(suppl):S255–65.

    Article  Google Scholar 

  36. Zigler JE, Delamarter R, Murrey D, et al. ProDisc-C and anterior cervical discectomy and fusion as surgical treatment for single-level cervical symptomatic degenerative disc disease: five-year results of a Food and Drug Administration study. Spine (Phila Pa 1976). 2013;38:203–9.

    Article  PubMed  Google Scholar 

  37. Lu H, Peng L. Efficacy and safety of Mobi-C cervical artificial disc versus anterior discectomy and fusion in patients with symptomatic degenerative disc disease: a meta-analysis. Medicine (Baltimore). 2017;96:e8504.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Basu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gerber, C.J., Basu, A., Vijayan, S.P. (2023). Bioengineering of Spinal Implants. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-19-7540-0_100

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7540-0_100

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7539-4

  • Online ISBN: 978-981-19-7540-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics