Skip to main content

Role of Animal Models in the Development of Bacteria-Based Live Therapeutics to Fight Cancer

  • Reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

Cancer is the most prevalent cause of death worldwide. Cancer affects the lifestyle of a person both mentally and physically. Chemotherapy and radiation therapy have been the major treatments that kill the cancerous cells along with the surrounding healthy cells. As these therapies suffer many side effects, researchers are concentrating on the therapies which could combat cancer with minimal side effects and higher efficiency. Bacteria-based therapies have come into the limelight with their myriad health benefits as well as their potential to cure cancer. Due to the large versatility in the strains of bacteria especially probiotics, there has been increasing research on the bacteria-derived treatment strategies which could specifically target cancer cells while maintaining homeostasis and leaving healthy neighboring cells unaffected. This chapter is aimed at understanding the beneficial effect of various bacterial strains on cancerous cells as well as the improved beneficial effects of bioengineered bacterial systems that leave hope for promising future treatment regimens for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allemailem KS (2021) Innovative approaches of engineering tumor-targeting bacteria with different therapeutic payloads to fight cancer: a smart strategy of disease management. Int J Nanomedicine 16:8159

    Article  CAS  Google Scholar 

  • Aly RG, El-Enbaawy MI, Abd El-Rahman SS, Ata NS (2021) Antineoplastic activity of Salmonella Typhimurium outer membrane nanovesicles. Exp Cell Res 399(1):112423

    Article  CAS  Google Scholar 

  • Amalaradjou M, Bhunia A (2013) Bioengineered probiotics, a strategic approach to control enteric infections. Bioengineered 4(6):379–387

    Article  Google Scholar 

  • Azam R, Ghafouri-Fard S, Tabrizi M, Modarressi M, Ebrahimzadeh-Vesal R, Daneshvar M et al (2014) Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pac J Cancer Prev 15(10):4255–4259

    Article  Google Scholar 

  • Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199

    Article  Google Scholar 

  • Bučević Popović V, Šitum M, Chow CT, Chan LS, Roje B, Terzić J (2018) The urinary microbiome associated with bladder cancer. Sci Rep 8(1):12157. https://doi.org/10.1038/s41598-018-29054-w

    Article  CAS  Google Scholar 

  • Charrier-Savournin F, Château M, Gire V, Sedivy J, Piette J, Dulić V (2004) p21-mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 15(9):3965–3976

    Article  CAS  Google Scholar 

  • Chu DT, Nguyen TT, Tien N, Tran DK, Jeong JH, Anh PG, Thanh VV, Truong DT, Dinh TC (2020) Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cells 9(3):563. https://doi.org/10.3390/cells9030563

    Article  CAS  Google Scholar 

  • Cláudio Lima de Jesus L, Alvarenga Lima F, Dias Coelho-Rocha N, Fernando da Silva T, Paz J, Azevedo V et al (2020) Recombinant probiotics and microbiota modulation as a good therapy for diseases related to the GIT. In: The health benefits of foods - current knowledge and further development. https://doi.org/10.5772/intechopen.88325

    Chapter  Google Scholar 

  • Coley W (1912) Disappearance of a recurrent carcinoma after injections of mixed toxins. Ann Surg 55:897–898

    Google Scholar 

  • Crezee J, Franken N, Oei AL (2021) Hyperthermia-based anti-cancer treatments. Cancers 13(6):1240. https://doi.org/10.3390/cancers13061240

    Article  Google Scholar 

  • Cronin M, Stanton RM, Francis KP, Tangney M (2012) Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther 19(11):731–740. https://doi.org/10.1038/cgt.2012.59

    Article  CAS  Google Scholar 

  • Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, Hasty J, Bhatia SN (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7(289):289ra84. https://doi.org/10.1126/scitranslmed.aaa3519

    Article  CAS  Google Scholar 

  • Das SK, Menezes ME, Bhatia S, Wang X-Y, Emdad L, Sarkar D, Fisher PB (2015) Gene therapies for cancer: strategies, challenges and successes. J Cell Physiol 230(2):259–271

    Article  CAS  Google Scholar 

  • Date A, Hanes J, Ensign L (2016) Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release 240:504–526

    Article  CAS  Google Scholar 

  • dos Santos AF, de Almeida DRQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment – an update review. J Cancer Metastasis Treat 5:25. https://doi.org/10.20517/2394-4722.2018.83

    Article  CAS  Google Scholar 

  • Drago L (2019) Probiotics and colon cancer. Microorganisms 7(3):66

    Article  CAS  Google Scholar 

  • Duong MTQ, Qin Y, You SH, Min JJ (2019) Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 51(12):1–15

    Article  CAS  Google Scholar 

  • El-Atti S, Wasicek K, Mark S, Hegazi R (2009) Use of probiotics in the management of chemotherapy-induced diarrhea: a case study. J Parenter Enter Nutr 33(5):569–570

    Article  Google Scholar 

  • Gao J, Wang S, Dong X, Wang Z (2021) RGD-expressed bacterial membrane-derived nanovesicles enhance cancer therapy via multiple tumorous targeting. Theranostics 11(7):3301

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez N, Prete R, Perugini M, Merola C, Battista N, Corsetti A (2020) Probiotic antigenotoxic activity as a DNA bioprotective tool: a minireview with focus on endocrine disruptors. FEMS Microbiol Lett 367(3):fnaa041

    Article  CAS  Google Scholar 

  • Gong H, Shi Y, Xiao X, Cao P, Wu C, Tao L, Hou D, Wang Y, Zhou L (2017) Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma. Sci Rep 7(1):5507. https://doi.org/10.1038/s41598-017-05576-7

    Article  CAS  Google Scholar 

  • Górska A, Przystupski D, Niemczura M, Kulbacka J (2019) Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 76(8):939–949

    Article  Google Scholar 

  • Gujrati V, Prakash J, Malekzadeh-Najafabadi J, Stiel A, Klemm U, Mettenleiter G, Aichler M, Walch A, Ntziachristos V (2019) Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nat Commun 10(1):1114. https://doi.org/10.1038/s41467-019-09034-y

    Article  CAS  Google Scholar 

  • He L, Yang H, Tang J, Liu Z, Chen Y, Lu B et al (2019) Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J Biol Eng 13(58). https://doi.org/10.1186/s13036-019-0189-9

  • Huang W, Shu C, Hua L, Zhao Y, Xie H, Qi J et al (2020) Modified bacterial outer membrane vesicles induce autoantibodies for tumor therapy. Acta Biomater 108:300–312

    Article  CAS  Google Scholar 

  • Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S (2021a) Bacteria-based cancer immunotherapy. Adv Sci 8(7):2003572

    Article  CAS  Google Scholar 

  • Jacouton E, Chain F, Sokol H, Langella P, Bermúdez-Humarán L (2017) Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol 8:1553

    Article  Google Scholar 

  • Jacouton E, Torres Maravilla E, Boucard A, Pouderous N, Pessoa Vilela A, Naas I et al (2019) Anti-tumoral effects of recombinant Lactococcus lactis strain secreting IL-17A cytokine. Front Microbiol 23(9):3355

    Article  Google Scholar 

  • Jiang T, Yang X, Li G, Zhao X, Sun T, Müller R, Wang H, Li M, Zhang Y (2021) Bacteria-based live vehicle for in vivo bioluminescence imaging. Anal Chem 93(47):15687–15695. https://doi.org/10.1021/acs.analchem.1c03568

    Article  CAS  Google Scholar 

  • Khoder G, Al-Menhali A, Al-Yassir F, Karam S (2016) Potential role of probiotics in the management of gastric ulcer. Exp Ther Med 12(1):3–17

    Article  CAS  Google Scholar 

  • Kim OY, Dinh NTH, Park HT, Choi SJ, Hong K, Gho YS (2017) Bacterial protoplast-derived nanovesicles for tumor targeted delivery of chemotherapeutics. Biomaterials 113:68–79

    Article  CAS  Google Scholar 

  • Laliani G, Sorboni SG, Lari R, Yaghoubi A, Soleimanpour S, Khazaei M et al (2020) Bacteria and cancer: different sides of the same coin. Life Sci 246:117398

    Article  CAS  Google Scholar 

  • Leng Q, Holden VK, Deepak J, Todd NW, Jiang F (2021) Microbiota biomarkers for lung cancer. Diagnostics (Basel) 11(3):407. https://doi.org/10.3390/diagnostics11030407

    Article  CAS  Google Scholar 

  • Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q (2021) Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv Mater (Deerfield Beach, Fla) 33(38):e2102580. https://doi.org/10.1002/adma.202102580

    Article  CAS  Google Scholar 

  • Liang JQ, Li T, Nakatsu G, Chen YX, Yau TO, Chu E, Wong S, Szeto CH, Ng SC, Chan FKL, Fang JY, Sung JJY, Yu J (2020) A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut 69(7):1248–1257. https://doi.org/10.1136/gutjnl-2019-318532. Epub 2019 Nov 27

    Article  CAS  Google Scholar 

  • Liu K, Yang X, Zeng M, Yuan Y, Sun J, He P, Sun J, Xie Q, Chang X, Zhang S, Chen X, Cai L, Xie Y, Jiao X (2021) The role of fecal Fusobacterium nucleatum and pks+ Escherichia coli as early diagnostic markers of colorectal cancer. Dis Markers 2021:1171239. https://doi.org/10.1155/2021/1171239

    Article  CAS  Google Scholar 

  • Ma X, Wang H, Zhang P, Xu L, Tian Z (2019) Association between small intestinal bacterial overgrowth and toll-like receptor 4 in patients with pancreatic carcinoma and cholangiocarcinoma. Turk J Gastroenterol 30(2):177–183

    Article  Google Scholar 

  • Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  Google Scholar 

  • Marshall AP, Shirley JD, Carlson EE (2020) Enzyme-targeted fluorescent small-molecule probes for bacterial imaging. Curr Opin Chem Biol 57:155–165

    Article  CAS  Google Scholar 

  • Mathipa M, Thantsha M (2017) Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathogens. https://doi.org/10.1186/s13099-017-0178-9

  • Morrissey D, O’Sullivan GC, Tangney M (2010) Tumour targeting with systemically administered bacteria. Curr Gene Ther 10(1):3–14

    Google Scholar 

  • Nazir Y, Hussain S, Abdul Hamid A, Song Y (2018) Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. Biomed Res Int 2018:1–17

    Article  Google Scholar 

  • Odun-Ayo F, Mellem J, Reddy L (2016) Improving the survival of probiotic in simulated conditions and azoxymethane-induced colon tumour bearing mice using modified citrus pectin-alginate microencapsulation. Afr J Tradit Complement Altern Med 13(2):101

    Article  CAS  Google Scholar 

  • Panebianco C, Latiano T, Pazienza V (2020) Microbiota manipulation by probiotics administration as emerging tool in cancer prevention and therapy. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00679

  • Panteli JT, Forkus BA, Van Dessel N, Forbes NS (2015) Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker. Integr Biol 7(4):423–434. https://doi.org/10.1039/c5ib00047e

    Article  CAS  Google Scholar 

  • Panteli JT, Van Dessel N, Forbes NS (2020) Detection of tumors with fluoromarker-releasing bacteria. Int J Cancer 146(1):137–149. https://doi.org/10.1002/ijc.32414

    Article  CAS  Google Scholar 

  • Periyathambi P, Balian A, Hu Z, Padro D, Hernandez LI, Uvdal K et al (2021) Activatable MRI probes for the specific detection of bacteria. Anal Bioanal Chem 413(30):7353–7362

    Article  CAS  Google Scholar 

  • Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S, Heaton R, Mckay R, Patel SP, Swafford AD, Knight R (2020) Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579(7800):567–574. https://doi.org/10.1038/s41586-020-2095-1

    Article  CAS  Google Scholar 

  • Qing S, Lyu C, Zhu L, Pan C, Wang S, Li F et al (2020) Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv Mater 32(47):2002085

    Article  CAS  Google Scholar 

  • Riedel K (1998) Microbial biosensors based on oxygen electrodes. In: Mulchandani A, Rogers KR (eds) Enzyme and microbial biosensors. Methods in biotechnology, vol 6. Humana Press. https://doi.org/10.1385/0-89603-410-0:199

    Chapter  Google Scholar 

  • Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, Gerber GK, Way JC, Silver PA (2017) Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35(7):653–658. https://doi.org/10.1038/nbt.3879

    Article  CAS  Google Scholar 

  • Rommasi F (2021) Bacterial-based methods for cancer treatment: what we know and where we are. Oncol Ther. https://doi.org/10.1007/s40487-021-00177-x. Epub ahead of print. PMID: 34780046

  • Shirakawa T, Kitagawa K (2017) Antitumor effect of oral cancer vaccine with Bifidobacterium delivering WT1 protein to gut immune system is superior to WT1 peptide vaccine. Hum Vaccin Immunother 14(1):159–162

    Article  Google Scholar 

  • Shirazi M, Al-Alo K, Al-Yasiri MH, Lateef ZM, Ghasemian A (2020) Microbiome Dysbiosis and predominant bacterial species as human cancer biomarkers. J Gastrointest Cancer 51(3):725–728. https://doi.org/10.1007/s12029-019-00311-z

    Article  CAS  Google Scholar 

  • Song Q, Zheng C, Jia J, Zhao H, Feng Q, Zhang H, Zhang Y (2019) A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Adv Mater 31(43). https://doi.org/10.1002/adma.201903793

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338

    Article  Google Scholar 

  • Tanna T, Ramachanderan R, Platt RJ (2021) Engineered bacteria to report gut function: technologies and implementation. Curr Opin Microbiol 59:24–33. https://doi.org/10.1016/j.mib.2020.07.01

    Article  CAS  Google Scholar 

  • Toi M, Horota S, Tomotaki A et al (2013) Probiotics beverage with soy isoflavone consumption for breast cancer prevention: a case-control study. Curr Nutr Food Sci 9:194–200

    Article  CAS  Google Scholar 

  • Tunsjø HS, Gundersen G, Rangnes F, Noone JC, Endres A, Bemanian V (2019) Detection of Fusobacterium nucleatum in stool and colonic tissues from Norwegian colorectal cancer patients. Eur J Clin Microbiol Infect Dis 38(7):1367–1376. https://doi.org/10.1007/s10096-019-03562-7

    Article  Google Scholar 

  • Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D et al (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521

    Article  Google Scholar 

  • World Health Organization (2020) Global health estimates 2020: deaths by cause, age, sex, by country and by region, 2000–2019. World Health Organization, Geneva

    Google Scholar 

  • Xie S, Zhao L, Song X, Tang M, Mo C, Li X (2017) Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J Control Release 268:390–399

    Article  CAS  Google Scholar 

  • Xu W, Yang L, Lee P, Huang WC, Nossa C, Ma Y, Deng FM, Zhou M, Melamed J, Pei Z (2014) Mini-review: perspective of the microbiome in the pathogenesis of urothelial carcinoma. Am J Clin Exp Urol 2(1):57–61. PMID: 25126590; PMCID: PMC4219294

    Google Scholar 

  • Xuan C, Shamonki J, Chung A, DiNome M, Chung M, Sieling P et al (2014) Microbial dysbiosis is associated with human breast cancer. PLoS One 9(1):e83744

    Article  Google Scholar 

  • Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, Sawayama H, Kinoshita K, Ishimoto T, Iwatsuki M, Sakamoto Y, Yamashita Y, Yoshida N, Watanabe M, Baba H (2016) Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22(22):5574–5581. https://doi.org/10.1158/1078-0432.CCR-16-1786. Epub 2016 Oct 21. PMID: 27769987

    Article  CAS  Google Scholar 

  • Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J (2021) Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci 9(17):5732–5744

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Xia L, Zhang X, Ding X, Yan F et al (2012) Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol 78(21):7603–7610

    Article  CAS  Google Scholar 

  • Zhou S, Gravekamp C, Bermudes D, Liu K (2018) Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer 18(12):727–743

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugaraja Meenakshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tata, K., Ramadevi, S., Shelin, R., Meenakshi, S. (2023). Role of Animal Models in the Development of Bacteria-Based Live Therapeutics to Fight Cancer. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-3824-5_7

Download citation

Publish with us

Policies and ethics