Skip to main content

Use of Stem Cells on Animal Model of Cancer Research

  • Reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

Cancer is the culmination of many complex disease states affecting multiple organs. Primary diagnosis involves the utilization of prognostic cancer markers to evaluate the likelihood of systemic disease progression. However, the establishment of animal models for aid in cancer research has exploded in recent years. Multiomics analysis unveiled the sequence of cancer development, while animal model research established the pathophysiology of cancer. Recently, the application of stromal and pluripotent stem cells in cancer development has garnered considerable interest. This chapter contributes an overview of the animal models currently employed for determining the role of stem cells derived from various sources in cancer studies. We also address how a better knowledge of stem cell activity can lead to novel cancer detection and treatment strategies and the chapter also discusses on some of the most current animal models and concepts in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Isringhausen S, Li H, Paterson AJ, He J, Gomariz Á, Nagasawa T, Nombela-Arrieta C, Bhatia R (2019) Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell 24(5):769–784.e6. https://doi.org/10.1016/j.stem.2019.02.018

    Article  CAS  Google Scholar 

  • Ahn J-O, Coh Y-R, Lee H-W, Shin I-S, Kang S-K, Youn H-Y (2015) Human Adipose Tissue-derived Mesenchymal Stem Cells Inhibit Melanoma Growth In Vitro and In Vivo. Anticancer Research 35(1):159–168

    Google Scholar 

  • Andreeff M, Marini FC, Westin SN, Coleman RL, Thall PF, Aljahdami V, Qazilbash MH, Rezvani K, Timmons M, Heese L, Wang R-Y, Champlin RE, Shpall EJ, Olson A (2018) Abstract 75: A phase I trial of mesenchymal stem cells transfected with a plasmid secreting interferon beta in advanced ovarian cancer. Cancer Res 78(13 Supplement):75–75. https://doi.org/10.1158/1538-7445.AM2018-75

  • Arslan O, Elcin AE, Atilla E, Seker S, Baydin P, Gunduz M, Ozen M, Bayraktar UD, Ilhan O, Beksac M, Elcin YM, Gurman G (2018) Mesenchymal Stem Cell Infusion in Haploidentical Hematopoietic Stem Cell Transplantation in Patients with Hematological Malignancies. Biology of Blood and Marrow Transplantation 24(3):S178–S179. https://doi.org/10.1016/j.bbmt.2017.12.115

    Article  Google Scholar 

  • Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, Tamura M (2009) Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 280(1):31–37. https://doi.org/10.1016/j.canlet.2009.02.011

  • Bajpai A, Quazi TA, Tang H-W, Manzar N, Singh V, Thakur A, Ateeq B, Perrimon N, Sinha P (2020) A Drosophila model of oral peptide therapeutics for adult intestinal stem cell tumors. Dis Model Mech 13(7):dmm044420. https://doi.org/10.1242/dmm.044420

  • Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134. https://doi.org/10.1038/nm.4409

    Article  CAS  Google Scholar 

  • Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120(1):6–15. https://doi.org/10.1038/s41416-018-0328-y

    Article  CAS  Google Scholar 

  • Bilder D, Ong K, Hsi T-C, Adiga K, Kim J (2021) Tumour–host interactions through the lens of drosophila. Nat Rev Cancer 21(11):687–700. https://doi.org/10.1038/s41568-021-00387-5

    Article  CAS  Google Scholar 

  • Biology C, Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44(12):2144–2151. https://doi.org/10.1016/j.biocel.2012.08.022

    Article  CAS  Google Scholar 

  • Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771. https://doi.org/10.1089/scd.2012.0304

    Article  CAS  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15. https://doi.org/10.1016/j.stem.2011.06.008

    Article  CAS  Google Scholar 

  • Carvalho S, Cabral J, Reis CA, Atima F, Artner G (2012) Review article. 165–172. https://doi.org/10.1016/j.trsl.2011.11.005

  • Cemazar M (2018) Transgenic mouse models in cancer research. Front Oncol 8(July):1–18. https://doi.org/10.3389/fonc.2018.00268

    Article  Google Scholar 

  • Chen AS, Read RD (2019) Drosophila melanogaster as a model system for human glioblastomas. Adv Exp Med Biol 1167:207–224. https://doi.org/10.1007/978-3-030-23629-8_12

    Article  CAS  Google Scholar 

  • Corsten MF, Shah K (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9(4):376–384. https://doi.org/10.1016/S1470-2045(08)70099-8

    Article  Google Scholar 

  • Cruz CRY, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, Diouf O, Liu E, Barrett AJ, Ito S, Shpall EJ, Krance RA, Kamble RT, Carrum G, Hosing CM, Gee AP, Mei Z, Grilley BJ, Heslop HE, Rooney CM, Brenner MK, Bollard CM, Dotti G (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973. https://doi.org/10.1182/blood-2013-06-506741

    Article  CAS  Google Scholar 

  • Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences 104(24) 10158–10163 https://doi.org/10.1073/pnas.0703478104, PMID: 17548814; PMCID: PMC1891215

  • de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, Alousi A, Saliba R, McMannis JD, Kaur I, Kebriaei P, Parmar S, Popat U, Hosing C, Champlin R, Bollard C, Molldrem JJ, Jones RB, Nieto Y, Andersson BS, Shah N, Oran B, Cooper LJN, Worth L, Qazilbash MH, Korbling M, Rondon G, Ciurea S, Bosque D, Maewal I, Simmons PJ, Shpall EJ (2012) Cord-Blood Engraftment with Ex Vivo Mesenchymal-Cell Coculture. N Engl J Med 367(24):2305–2315. https://doi.org/10.1056/NEJMoa1207285

  • Fogarty CE, Bergmann A (2017) Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 24(8):1390–1400. https://doi.org/10.1038/cdd.2017.47

    Article  CAS  Google Scholar 

  • Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, Uraoka T, Watanabe T, Kanai T, Sato T (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838. https://doi.org/10.1016/j.stem.2016.04.003

    Article  CAS  Google Scholar 

  • Gabellini C, Gómez-Abenza E, Ibáñez-Molero S, Tupone MG, Pérez-Oliva AB, de Oliveira S, Del Bufalo D, Mulero V (2018) Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer 142(3):584–596. https://doi.org/10.1002/ijc.31075

    Article  CAS  Google Scholar 

  • Ganta C, Chiyo D, Ayuzawa R, Rachakatla R, Pyle M, Andrews G, Weiss M, Tamura M, Troyer D (2009) Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res 69(5):1815–1820. https://doi.org/10.1158/0008-5472.CAN-08-2750

  • Gardner HL, Fenger JM, London CA (2016) Dogs as a model for cancer. Annu Rev Anim Biosci 4:1–24. https://doi.org/10.1146/annurev-animal-022114-110911

    Article  CAS  Google Scholar 

  • Gauthaman K, Fong C-Y, Arularasu S, Subramanian A, Biswas A, Choolani M, Bongso A (2013) Human Wharton’s Jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. Journal of Cellular Biochemistry 114(2):366–377. https://doi.org/10.1002/jcb.24367

  • Golinelli G, Mastrolia I, Aramini B, Masciale V, Pinelli M, Pacchioni L, Casari G, Dall’Ora M, Soares MBP, Damasceno PKF, Silva DN, Dominici M, Grisendi G (2020) Arming mesenchymal stromal/stem cells against cancer: has the time come? Front Pharmacol 11:1544. https://doi.org/10.3389/fphar.2020.529921

    Article  CAS  Google Scholar 

  • Gunsilius E, Gastl G, Petzer AL (2001) Hematopoietic stem cells. Biomed Pharmacother 55:186–194

    Article  CAS  Google Scholar 

  • Hu Y, Fu L (2012) Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res 2(3):340–356

    Google Scholar 

  • Huang Q, Li F, Liu X, Li W, Shi W, Liu F-F, O’Sullivan B, He Z, Peng Y, Tan A-C, Zhou L, Shen J, Han G, Wang X-J, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li C-Y (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866. https://doi.org/10.1038/nm.2385

    Article  CAS  Google Scholar 

  • Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Won Lee H, Rajendran RL, Baek SH, Jeon YH, Jeong SY, Lee S-W, Lee J, Ahn B-C (2020) Corrigendum to “in vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging”. Stem Cells Int 2020:8275897. https://doi.org/10.1155/2020/8275897

  • Kim SM, Kim D-S, Jeong CH, Kim DH, Kim JH, Jeon HB, Kwon S-J, Jeun S-S, Yang YS, Oh W, Chang JW (2011) CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem Biophys Res Commun 407(4):741–746. https://doi.org/10.1016/j.bbrc.2011.03.093

  • Kim R, Lee S, Lee J, Kim M, Kim WJ, Lee HW, Lee MY, Kim J, Chang and W (2018) Exosomes derived from microRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy. BMB Reports 51(8):406–411. https://doi.org/10.5483/BMBRep.2018.51.8.105

  • Knoop K, Schwenk N, Schmohl K, Müller A, Zach C, Cyran C, Carlsen J, Böning G, Bartenstein P, Göke B, Wagner E, Nelson PJ, Spitzweg C (2015) Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J Nucl Med 56(4):600–606. https://doi.org/10.2967/jnumed.114.146662

    Article  CAS  Google Scholar 

  • Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291. https://doi.org/10.1016/j.stem.2014.02.006

    Article  CAS  Google Scholar 

  • Kumar S, Chanda D, Ponnazhagan S (2008) Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 15(10):711–715. https://doi.org/10.1038/gt.2008.35

    Article  CAS  Google Scholar 

  • Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213. https://doi.org/10.1038/nature14034

    Article  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-cortes J, Mindent M, Paterson B, Caligiuri MA, Dickll JE (1994) No Title. 367(February):645–648

    Google Scholar 

  • Liesveld JL, Sharma N, Aljitawi OS (2020) Stem cell homing: from physiology to therapeutics. Stem Cells 38(10):1241–1253. https://doi.org/10.1002/stem.3242

    Article  Google Scholar 

  • Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM (2015) Macrophage Migration Inhibitory Factor–CXCR4 Is the Dominant Chemotactic Axis in Human Mesenchymal Stem Cell Recruitment to Tumors. The Journal of Immunology 194(7):3463–3474. https://doi.org/10.4049/jimmunol.1402097

    Article  CAS  Google Scholar 

  • Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296. https://doi.org/10.1016/j.ccr.2012.03.003

    Article  CAS  Google Scholar 

  • Maurya DK, Doi C, Kawabata A, Pyle MM, King C, Wu Z, Troyer D, Tamura M (2010) Therapy with un-engineered naïve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer 10(1):590. https://doi.org/10.1186/1471-2407-10-590

    Article  CAS  Google Scholar 

  • Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev 62(12):1167–1174. https://doi.org/10.1016/j.addr.2010.09.013

    Article  CAS  Google Scholar 

  • Mitchell J, Tinkey T, Avritscher R, Pelt V (2016) Validation of a preclinical model of diethylnitrosamine-induced hepatic neoplasia in Yucatan miniature pigs. Oncology 91(2):90–100. https://doi.org/10.1159/000446074

    Article  CAS  Google Scholar 

  • Naert T, Colpaert R, Van Nieuwenhuysen T, Dimitrakopoulou D, Leoen J, Haustraete J, Boel A, Steyaert W, Lepez T, Deforce D, Willaert A, Creytens D, Vleminckx K (2016) CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 6(1):35264. https://doi.org/10.1038/srep35264

    Article  CAS  Google Scholar 

  • Nishimura T, Nakauchi H (2019) Generation of Antigen-Specific T Cells from Human Induced Pluripotent Stem Cells. Methods Mol Biol 1899:25–40. https://doi.org/10.1007/978-1-4939-8938-6_3

    Article  CAS  Google Scholar 

  • Pal D, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, Bryant VL, Penington JS, Di Stefano L, Tubau Ribera N, Wilcox S, Mann GB, kConFab, Papenfuss AT, Lindeman GJ, Smyth GK, Visvader JE (2021) A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J 40(11):e107333, https://doi.org/10.15252/embj.2020107333. Epub 2021 May 5. PMID: 33950524; PMCID: PMC8167363

  • Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270. https://doi.org/10.1016/j.jconrel.2014.07.042

    Article  CAS  Google Scholar 

  • Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35(4):851–858. https://doi.org/10.1002/stem.2575

    Article  CAS  Google Scholar 

  • Rodriguez J, Sheets KT, Hingtgen SD (2016) Neural stem cell therapy for cancer. Methods 99:37–43. https://doi.org/10.1016/j.ymeth.2015.08.013

    Article  CAS  Google Scholar 

  • Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4(8):a008797. https://doi.org/10.1101/cshperspect.a008797

    Article  CAS  Google Scholar 

  • Sadhukha T, O’Brien TD, Prabha S (2014) Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release 196:243–251. https://doi.org/10.1016/j.jconrel.2014.10.015

    Article  CAS  Google Scholar 

  • Schütte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, Keil M, Yildiriman R, Jandrasits C, Borodina T, Amstislavskiy V, Worth CL, Schweiger C, Liebs S, Lange M, Warnatz H-J, Butcher LM, Barrett JE, Sultan M, Wierling C, Golob-Schwarzl N, Lax S, Uranitsch S, Becker M, Welte Y, Regan JL, Silvestrov M, Kehler I, Fusi A, Kessler T, Herwig R, Landegren U, Wienke D, Nilsson M, Velasco JA, Garin-Chesa P, Reinhard C, Beck S, Schäfer R, Regenbrecht CRA, Henderson D, Lange B, Haybaeck J, Keilholz U, Hoffmann J, Lehrach H, Yaspo M-L (2017) Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun 8(1):14262. https://doi.org/10.1038/ncomms14262

    Article  CAS  Google Scholar 

  • Smith S, Stone A, Oswalt H, Vaughan L, Ferdous F, Scott T, Dunn HW (2022) Evaluation of early post-natal pig mammary gland development and human breast cancer gene expression. Dev Biol 481:95–103. https://doi.org/10.1016/j.ydbio.2021.10.004

    Article  CAS  Google Scholar 

  • Stagg J (2008) Mesenchymal stem cells in cancer. Stem Cell Rev 4:119–124. https://doi.org/10.1007/s12015-008-9030-4

    Article  Google Scholar 

  • Sterneckert JL, Reinhardt P, Schöler HR (2014) Investigating human disease using stem cell models. Nature Publishing Group. https://doi.org/10.1038/nrg3764

  • Takahara K, Ii M, Inamoto T, Nakagawa T, Ibuki N, Yoshikawa Y, Tsujino T, Uchimoto T, Saito K, Takai T, Tanda N, Minami K, Uehara H, Komura K, Hirano H, Nomi H, Kiyama S, Asahi M, Azuma H (2016) microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer. Stem Cells Dev 25(17):1290–1298. https://doi.org/10.1089/scd.2016.0093

  • Timaner M, Tsai KK, Shaked Y (2020) Seminars in cancer biology the multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 60:225–237. https://doi.org/10.1016/j.semcancer.2019.06.003

    Article  CAS  Google Scholar 

  • Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, Zhou Z, Ouyang Z, Liu Z, Zhao Y, Zhao B, Zhang Q, Peng J, Lai C, Fan N, Liang Y, Lan T, Li N, Wang X, Wang X, Fan Y, Doevendans PA, Sluijter JPG, Liu P, Li X, Lai L (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 27(12):2061–2071. https://doi.org/10.1101/gr.222521.117

    Article  CAS  Google Scholar 

  • Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y (2018) Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine 13:5231–5248. https://doi.org/10.2147/IJN.S167142

    Article  CAS  Google Scholar 

  • Wang J, Zhu L, Chen X, Huang R, Wang S, Dong P (2019) Human bone marrow mesenchymal stem cells functionalized by hybrid baculovirus-adeno-associated viral vectors for targeting hypopharyngeal carcinoma. Stem Cells Dev 28(8):543–553. https://doi.org/10.1089/scd.2018.0252

    Article  CAS  Google Scholar 

  • Wang J, Chen Z, Sun M, Xu H, Gao Y, Liu J, Li M (2020) Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 64:101330. https://doi.org/10.1016/j.tice.2020.101330

    Article  CAS  Google Scholar 

  • Watts TL, Cui R, Szaniszlo P, Resto VA, Powell DW, Pinchuk IV (2016) PDGF-AA mediates mesenchymal stromal cell chemotaxis to the head and neck squamous cell carcinoma tumor microenvironment. J Transl Med 14:337. https://doi.org/10.1186/s12967-016-1091-6

  • Wobus M, List C, Dittrich T, Dhawan A, Duryagina R, Arabanian LS, Kast K, Wimberger P, Stiehler M, Hofbauer LC, Jakob F, Ehninger G, Anastassiadis K, Bornhäuser M (2015) Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer 136(1):44–54. https://doi.org/10.1002/ijc.28960

    Article  CAS  Google Scholar 

  • Wu D-M, Wen X, Han X-R, Wang S, Wang Y-J, Shen M, Fan S-H, Zhang Z-F, Shan Q, Li M-Q, Hu B, Lu J, Chen G-Q, Zheng Y-L (2019) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126-3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. Molecular Therapy - Nucleic Acids 16:229–245. https://doi.org/10.1016/j.omtn.2019.02.022

    Article  CAS  Google Scholar 

  • Xie C, Yang Z, Suo Y, Chen Q, Wei D, Weng X, Gu Z, Wei X (2017) Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models. Stem Cells Transl Med 6(4):1120–1131. https://doi.org/10.1002/sctm.16-0204

    Article  CAS  Google Scholar 

  • Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, Chan D, Chan AS, Ma S, Lam KO, Bartfeld S, Man AHY, Lee BCH, Chan ASY, Wong JWH, Cheng PSW, Chan AKW, Zhang J, Shi J, Fan X, Kwong DLW, Mak TW, Yuen ST, Clevers H, Leung SY (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882–897.e11. https://doi.org/10.1016/j.stem.2018.09.016

    Article  CAS  Google Scholar 

  • Yang S-A, Portilla J-M, Mihailovic S, Huang Y-C, Deng W-M (2019) Oncogenic notch triggers neoplastic tumorigenesis in a transition-zone-like tissue microenvironment. Dev Cell 49(3):461–472.e5. https://doi.org/10.1016/j.devcel.2019.03.015

    Article  CAS  Google Scholar 

  • Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, Guo Q, Gao X, Li Y, Rao X, Zhou Y, Liang L, Wang Y, Zhang J, Zhang H, Li G, Zhang L, Peng J, Cai S, Hu C, Gao J, Clevers H, Zhang Z, Hua G (2020) Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26(1):17–26.e6. https://doi.org/10.1016/j.stem.2019.10.010

    Article  CAS  Google Scholar 

  • Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang X, Pan J, Fan J, Qi S, Qiu B (2019) Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY) 11(15):5300–5318. https://doi.org/10.18632/aging.102092

  • Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G (2013) Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 4(3):70. https://doi.org/10.1186/scrt221

    Article  CAS  Google Scholar 

  • Zhang H, Wang J, Ren T, Huang Y, Liang X, Yu Y, Wang W, Niu J, Guo W (2020) Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Letters 490:54–65. https://doi.org/10.1016/j.canlet.2020.07.008

    Article  CAS  Google Scholar 

  • Zhao Y, Tang S, Guo J, Alahdal M, Cao S, Yang Z, Zhang F, Shen Y, Sun M, Mo R, Zong L, Jin L (2017) Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci Rep 7(1):44758. https://doi.org/10.1038/srep44758

  • Zheng W, Fang Y (2021) Application of animal models in cancer research: recent progress and future prospects. Cancer Manag Res 13:2455–2475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arikketh Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patni, A.P., Varshini, M.A., Devi, A. (2023). Use of Stem Cells on Animal Model of Cancer Research. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-3824-5_6

Download citation

Publish with us

Policies and ethics