Skip to main content

Isolation and Purification of Various Mammalian Cells: Single Cell Isolation

  • Reference work entry
  • First Online:
Practical Approach to Mammalian Cell and Organ Culture

Abstract

A typical adult mammalian body consists of 30–40 trillion cells. Mammalian cells differ in their shape, size, morphology, and other structural and functional characteristics. These characteristics of mammalian cells can be the basis for the isolation of a particular cell type from any tissue or organ. Except for blood cells, various other mammalian cells are firmly adjoined together by extracellular matrix (ECM) proteins to form tissues and organs. To isolate and enrich the greater number of cells, their dislodging or enzymatic dissociation from the original parent tissues or organs is highly essential. Following dissociation, the isolation and purification of mammalian cells may be based on the following procedures: (1) Cell isolation is based on cell surface charge and adhesion. (2) Cell isolation based on cell size and density (density gradient centrifugation, filtration, sedimentation). (3) Cell isolation based on cell morphology and physiology (selective culture medium, laser capture microdissection system). (4) Cell isolation based on cell surface markers (fluorescence-activated cell sorting, magnetic separation, cell purification using complement depletion, purification methods involving DNA sequences, other technology: mitochondrial dye and aptamer technology). (5) Cell isolation based on a combination of the above techniques (immuno-density-assisted separation: erythrocyte Rosetting immuno-laser capture microdissection system, microfluidics-based cell isolation, hydrodynamic cell sorting, acoustic cell sorting, electrophoretic sorting of cells). In this chapter, besides describing all the above-mentioned isolation techniques, toward the end, various single-cell isolation techniques and the tools for single-cell analysis such as genomics, transcriptomics, and proteomics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abts H, Emmerich M, Miltenyi S, Radbruch A, Tesch H. CD20 positive human B lymphocytes separated with the magnetic cell sorter (MACS) can be induced to proliferation and antibody secretion in vitro. J Immunol Methods. 1989;125:19–28.

    CAS  PubMed  Google Scholar 

  • Almeida M, Garcia Montero A, Orfao A. Cell purification: a new challenge for biobanks. Pathobiology. 2014;81:261–75.

    CAS  PubMed  Google Scholar 

  • Amos PJ, Bozkulak EC, Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs. 2011;195:26–40.

    PubMed  PubMed Central  Google Scholar 

  • Battye FL, Light A, Tarlinton DM. Single-cell sorting and cloning. J Immunol Methods. 2000;243:25–32.

    CAS  PubMed  Google Scholar 

  • Berns M. A history of laser scissors (microbeams). Methods Cell Biol. 2007;82:1–58.

    PubMed  Google Scholar 

  • Bonner WA, Hulett HR, Sweet RG, Herzenberg LA. Fluorescence activated cell sorting. Rev Sci Instrum. 1972;43:404–9.

    CAS  PubMed  Google Scholar 

  • Carroll S, Al-Rubeai M. ACSD labelling and magnetic cell separation: a rapid method of separating antibody secreting cells from non-secreting cells. J Immunol Methods. 2005;296:171–8.

    CAS  PubMed  Google Scholar 

  • Didar TF, Tabrizian M. Adhesion based detection, sorting and enrichment of cells in microfluidic lab-on-chip devices. Lab Chip. 2010;10:3043–53.

    CAS  PubMed  Google Scholar 

  • Du G, Fang Q, den Toonder J. Microfluidics for cell-based high throughput screening platforms – a review. Anal Chim Acta. 2016;903:36–50.

    CAS  PubMed  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science. 1996;274:998–1001.

    CAS  PubMed  Google Scholar 

  • Espina V, Wulfkhule JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Petricoin EF III, Liotta LA, et al. Laser-capture microdissection. Nat Protoc. 2006;1:586–603.

    CAS  PubMed  Google Scholar 

  • Espina V, Heiby M, Pierobon M, Liotta LA. Laser capture micro-dissection technology. Expert Rev Mol Diagn. 2007;7:647–57.

    CAS  PubMed  Google Scholar 

  • Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol. 1999;154:61–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fend F, Kremer M, Quintanilla-Martinez L. Laser capture microdissection: methodical aspects and applications with emphasis on immuno-laser capture microdissection. Pathobiology. 2000;68:209–14.

    CAS  PubMed  Google Scholar 

  • Garrett Bakelman F, Darshi M, Green S, Gur R, Lin L, Macias B, et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364:eaau8650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross A, Schöndube J, Niekrawitz S, Streule W, Riegger L, Zengerle R, et al. Single-cell printer: automated, on demand, and label free. J Lab Autom. 2013;18:504–18.

    CAS  PubMed  Google Scholar 

  • Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. Technologies for single-cell isolation. Int J Mol Sci. 2015;16:16897–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grützkau A, Radbruch A. Small but mighty: how the MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A. 2010;77:643–7.

    PubMed  Google Scholar 

  • Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, et al. Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified by magnetic-activated cell sorting. Bone Marrow Transplant. 1998;21:987–93.

    CAS  PubMed  Google Scholar 

  • Herzenberg L, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg L. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem. 2002;48:1819–27.

    CAS  PubMed  Google Scholar 

  • Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT. Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci U S A. 2005;102:15757–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber D. A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip. 2012;12:2175–81.

    CAS  PubMed  Google Scholar 

  • Koller MR, Hanania EG, Stevens J, Eisfeld TM, Sasaki GC, Fieck A, et al. High-throughput laser-mediated in situ cell purification with high purity and yield. Cytometry A. 2004;61:153–61.

    PubMed  Google Scholar 

  • Merrick BA, London RE, Bushel PR, Grissom SF, Paules RS. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics and bioinformatics. IARC Sci Publ. 2011;163:121–42.

    Google Scholar 

  • Miller RG, Phillips RA. Separation of cells by velocity sedimentation. J Cell Physiol. 1969;73:191–201.

    CAS  PubMed  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry. 1990;11:231–8.

    CAS  PubMed  Google Scholar 

  • Nakamura N, Ruebel K, Jin L, Qian X, Zhang H, Lloyd RV. Laser capture microdissection for analysis of single cells. Methods Mol Med. 2007;132:11–8.

    CAS  PubMed  Google Scholar 

  • Neurauter AA, Bonyhadi M, Lien E, Nokleby L, Ruud E, Camacho S, et al. Cell isolation and expansion using Dynabeads. Adv Biochem Eng Biotechnol. 2007;106:41–73.

    CAS  PubMed  Google Scholar 

  • Ohnuma K, Yomo T, Asashima M, Kaneko K. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining. BMC Cell Biol. 2006;7:25.

    PubMed  PubMed Central  Google Scholar 

  • Orfao A, Ruiz-Arguelles A. General concepts about cell sorting techniques. Clin Biochem. 1996;29:5–9.

    CAS  PubMed  Google Scholar 

  • Petersson F, Aberg L, Swärd Nilsson A, Laurell T. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem. 2007;79:5117–23.

    CAS  PubMed  Google Scholar 

  • Quang N, Miodek A, Cibiel A, Duconge F. Selection of aptamers against whole living cells: from cell-SELEX to identification of biomarkers. Methods Mol Biol. 2017;1575:253–72.

    CAS  PubMed  Google Scholar 

  • Recktenwald D, Radbruch A. Cell separation methods and applications. New York: M. Dekker; 1998.

    Google Scholar 

  • Riba J, Renz N, Niemöller C, Bleul S, Pfeifer D, Stosch J, et al. Molecular genetic characterization of individual cancer cells isolated via single-cell printing. PLoS One. 2016;11:e0163455.

    PubMed  PubMed Central  Google Scholar 

  • Schutze K, Lahr G. Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol. 1998;16:737–42.

    CAS  PubMed  Google Scholar 

  • Seal S. A sieve for the isolation of cancer cells and other large cells from the blood. Cancer. 1964;17:637–42.

    CAS  PubMed  Google Scholar 

  • Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013;14:618–30.

    CAS  PubMed  Google Scholar 

  • Shields C, Reyes C, Lapez G. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 2015;15:1230–49.

    PubMed  PubMed Central  Google Scholar 

  • Strelkauskas AJ, Teodorescu M, Dray S. Enumeration and isolation of human T and B lymphocytes by rosette formation with antibody-coated erythrocytes. Clin Exp Immunol. 1975;22:62–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sydor JR, Nock S. Protein expression profiling arrays: tools for the multiplexed highthroughput analysis of proteins. Proteome Sci. 2003;1:3.

    PubMed  PubMed Central  Google Scholar 

  • Szaniszlo P, Wang N, Sinha M, Reece LM, Van Hook JW, Luxon BA, Leary JF. Getting the right cells to the array: gene expression microarray analysis of cell mixtures and sorted cells. Cytometry A. 2004;59:191–202.

    PubMed  Google Scholar 

  • Tomlinson MJ, Tomlinson S, Yang XB, Kirkham J. Cell separation: terminology and practical considerations. J Tissue Eng. 2013;4:2041731412472690.

    PubMed  Google Scholar 

  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage t4 DNA polymerase. Science. 1990;249:505–10.

    CAS  PubMed  Google Scholar 

  • Ugelstad J, Hansen FK. Kinetics and mechanism of emulsion polymerization. Rubber Chem Technol. 1976;49:536–609.

    CAS  Google Scholar 

  • Ulmer A, Flad H. Discontinuous density gradient separation of human mononuclear leucocytes using Percoll as gradient medium. J Immunol Methods. 1979;30:1–10.

    CAS  PubMed  Google Scholar 

  • Vahey M, Voldman J. An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem. 2008;80:3135–43.

    CAS  PubMed  Google Scholar 

  • Wang X, Chen S, Kong M, Wang Z, Costa K, Li R, et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 2011;11:3656–62.

    CAS  PubMed  Google Scholar 

  • Will B, Steidl U. Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Pract Res Clin Haematol. 2010;23:391–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem. 2009;81:7436–42.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, S., Malik, P., Mukherjee, T.K. (2023). Isolation and Purification of Various Mammalian Cells: Single Cell Isolation. In: Mukherjee, T.K., Malik, P., Mukherjee, S. (eds) Practical Approach to Mammalian Cell and Organ Culture. Springer, Singapore. https://doi.org/10.1007/978-981-19-1731-8_7-1

Download citation

Publish with us

Policies and ethics