Skip to main content

Artificial Intelligence (AI) in the Nuclear Power Plants: Who Is Liable When AI Fails to Perform

  • Living reference work entry
  • First Online:
The Handbook of Energy Policy

Abstract

The sheer magnitude of process parameters and interactions between the systems in a nuclear power plant’s operation poses complications for operators. The operations became more challenging, especially during emergencies. Any recovery from an emergency relies heavily on modifying the system rapidly based on accessible data analysis. Artificial intelligence (AI) technology, working as expert guidance and quick access to a broad knowledge base, may resolve most of the complexities. Hence, experts believe that AI can be the expert system for operating a complex technology like the nuclear power plant. Nevertheless, AI deployment in the energy sector can also introduce several risks and challenges, including physical damage to the power plant. The existing nuclear liability laws and regulations promises a robust compensation packages for nuclear damages; nevertheless, the damage resulting from AI in nuclear power plant is still yet to be tested. Hence, this chapter particularly analyze whether the existing nuclear liability regimes and the tort law, possibly in combination with insurance and strict liability provisions, can constitute a sufficient nuclear damage claims or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham, K. S., & Rabin, R. L. (2019). Automated vehicles and manufacturer responsibility for accidents: A new legal regime for a new era. Virginia Law Review. https://doi.org/10.2139/ssrn.3159525

  • Akbari, R., Abbasi, M., Faghihi, F., Mirvakili, S. M., & Mokhtari, J. (2018). A novel multi-objective optimization method, imperialist competitive algorithm, for fuel loading pattern of nuclear reactors. Progress in Nuclear Energy. https://doi.org/10.1016/j.pnucene.2018.06.016

  • Alpaydin, E. (2016). Machine learning: The new AI. MIT Press essential knowledge series.

    Google Scholar 

  • Anisimov, A. P., & Ryzhenkov, A. J. (2016). Thirty years after the accident at the chernobyl nuclear power plant: Historical causes, lessons and legal effects. Journal of Energy and Natural Resources Law, 34. https://doi.org/10.1080/02646811.2016.1162047

  • Arens, M., Ã…hman, M., & Vogl, V. (2021). Which countries are prepared to green their coal-based steel industry with electricity? - Reviewing climate and energy policy as well as the implementation of renewable electricity. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2021.110938

  • Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels? Russian Chemical Reviews, 86. https://doi.org/10.1070/rcr4723

  • Asaro, P. M. (2016). The liability problem for autonomous artificial agents. In AAAI Spring Symposium - Technical Report.

    Google Scholar 

  • Bellamy, J. (2019). Civil liability for nuclear damage in countries developing nuclear new build programmes. Journal of World Energy Law and Business. https://doi.org/10.1093/jwelb/jwy036

  • Boyle, A. E. (2005). Globalising environmental liability: The interplay of national and international law. Journal of Environmental Law. https://doi.org/10.1093/envlaw/eqi001

  • Busby, J., Hackett, M., Love, L., Babu, S., Tobin, K., Cao, R., Pointer, D., Wharton, A., Qualls, L., & Betzler, B. (2018). Technologies to reactors: Enabling accelerated deployment of nuclear energy systems. ORNL/SPR-2018/1025.

    Google Scholar 

  • Cauffman, C. (2018). Robo-liability: The European union in search of the best way to deal with liability for damage caused by artificial intelligence. Maastricht Journal of European and Comparative Law. https://doi.org/10.1177/1023263X18812333

  • ÄŒerka, P., Grigiene, J., & Sirbikyte, G. (2015). Liability for damages caused by artificial intelligence. Computer Law and Security Review. https://doi.org/10.1016/j.clsr.2015.03.008

  • Chaudhary, G. (2020). Artificial intelligence: The Liability Paradox. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3709095

  • Consigli, G., Moriggia, V., Vitali, S., & Mercuri, L. (2018). Optimal insurance portfolios risk-adjusted performance through dynamic stochastic programming. Computational Management Science. https://doi.org/10.1007/s10287-018-0328-7

  • Cook, H. 2014. International nuclear law: Nuclear safety, emergency response and nuclear liability. In Asia-Pacific disaster management: Comparative and socio-legal perspectives. https://doi.org/10.1007/978-3-642-39768-4_14

  • Currie, D. E. (2006). The problems and gaps in the nuclear liability conventions and an analysis of how an actual claim would be brought under the current existing treaty regime in the event of a nuclear accident. Denver Journal of International Law & Policy, 35, 85.

    Google Scholar 

  • Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – Evolution, challenges and research agenda. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

  • Faure, M. G., & Fiore, K. (2009). An economic analysis of the nuclear liability subsidy. Pace Environmental Law Review, 26, 20.

    Google Scholar 

  • Fitzpatrick, M. (2019). Artificial intelligence and nuclear command and control. Survival. https://doi.org/10.1080/00396338.2019.1614782

  • Funabashi, Y., & Kitazawa, K. (2012). Fukushima in review: A complex disaster, a disastrous response. Bulletin of the Atomic Scientists. https://doi.org/10.1177/0096340212440359

  • Gandhi, S., & Kang, J. (2013). Nuclear safety and nuclear security synergy. Annals of Nuclear Energy, 60. https://doi.org/10.1016/j.anucene.2013.05.002

  • Ghoddusi, H., Creamer, G. G., & Rafizadeh, N. (2019). Machine learning in energy economics and finance: A review. Energy Economics. https://doi.org/10.1016/j.eneco.2019.05.006

  • Gill, M., Livens, F., & Peakman A. (2020). Nuclear fission. In Future energy: Improved, sustainable and clean options for our planet. https://doi.org/10.1016/B978-0-08-102886-5.00007-4

  • Hacker, P., Krestel, R., Grundmann, S., & Naumann, F. (2020). Explainable AI under contract and tort law: legal incentives and technical challenges. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-020-09260-6

  • Haibe-Kains, B., Adam, G. A., Hosny, A., Khodakarami, F., Shraddha, T., Kusko, R., Sansone, S. A., et al. (2020). Transparency and reproducibility in artificial intelligence. Nature. https://doi.org/10.1038/s41586-020-2766-y

  • Handrlica, J. (2015). The vienna convention on civil liability for nuclear damage and nuclear installations: Application problems revisited. Czech Yearbook of Public and Private International Law, 6.

    Google Scholar 

  • Handrlica, J. (2018). Nuclear liability conventions and decommissioning: Exclusion provisions revisited. Journal of World Energy Law and Business. https://doi.org/10.1093/jwelb/jwy007

  • Handrlica, J. (2021). The mirage of universalism in international nuclear liability law: A critical assessment 10 years after Fukushima. Review of European, Comparative and International Environmental Law. https://doi.org/10.1111/reel.12407

  • Hanna, B., Son, T. C., & Dinh, N. (2021). AI-guided reasoning-based operator support system for the nuclear power plant management. Annals of Nuclear Energy, 154. https://doi.org/10.1016/j.anucene.2020.108079

  • Heffron, R. J., Ashley, S. F., & Nuttall, W. J. (2016). The global nuclear liability regime post Fukushima Daiichi. Progress in Nuclear Energy. https://doi.org/10.1016/j.pnucene.2016.02.019

  • Jenkins, K., Heffron, R. J., & McCauley, D. (2016). The political economy of energy justice: A nuclear energy perspective. In The Palgrave handbook of the international political economy of energy. https://doi.org/10.1057/978-1-137-55631-8_27

  • Kaelbling, L. P., Littman, M. L., & Moore A. W. (1996). Kaelbling, Littman, Moore – 1996 – Reinforcement learning A survey.pdf. Journal of Artificial Intelligence Research.

    Google Scholar 

  • Kalair, A., Abas, N., Saleem, M. S., Kalair, A. R., & Khan, N. (2021). Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage, 3. https://doi.org/10.1002/est2.135

  • Karim, R., Karim, M. E., Muhammad-Sukki, F., Abu-Bakar, S. H., Bani, N. A., Munir, A. B., Kabir, A. I., Ardila-Rey, J. A., & Mas’Ud., A. A. (2018). Nuclear energy development in bangladesh: A study of opportunities and challenges. Energies, 11. https://doi.org/10.3390/en11071672

  • Karim, R., Muhammad-Sukki, F., Karim, M. E., Munir, A. B., Mohammad Sifat, I., Abu-Bakar, S. H., Bani, N. A., & Muhtazaruddin, M. N. (2018). Legal and regulatory development of nuclear energy in Bangladesh. Energies, 11. https://doi.org/10.3390/en11102847

  • Kim, Y., Kim, W., & Kim, M. (2014). An international comparative analysis of public acceptance of nuclear energy. Energy Policy, 66. https://doi.org/10.1016/j.enpol.2013.11.039

  • Kimani, K., Oduol, V., & Langat, K. (2019). Cyber security challenges for IoT-based smart grid networks. International Journal of Critical Infrastructure Protection. https://doi.org/10.1016/j.ijcip.2019.01.001

  • Kitchin, J. R. (2018). Machine learning in catalysis. Nature Catalysis. https://doi.org/10.1038/s41929-018-0056-y

  • Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica (Ljubljana). https://doi.org/10.31449/inf.v31i3.148

  • Kumar, A., & Tsvetkov, P. V. (2015). A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis. Annals of Nuclear Energy. https://doi.org/10.1016/j.anucene.2015.04.028

  • Le, E. P. V., Wang, Y., Huang, Y., Hickman, S., & Gilbert, F. J. (2019). Artificial intelligence in breast imaging. Clinical Radiology. https://doi.org/10.1016/j.crad.2019.02.006

  • Lee, Y. E., & Jung, Y. B. (2008). Challenges of nuclear power for sustainable role in Korean energy policy. Energy Conversion and Management, 49. https://doi.org/10.1016/j.enconman.2007.09.031

  • Lu, C., Lyu, J., Zhang, L., Gong, A., Fan, Y., Yan, J., & Li, X. (2020). Nuclear power plants with artificial intelligence in industry 4.0 era: top-level design and current applications – A systemic review. IEEE Access. https://doi.org/10.1109/access.2020.3032529

  • McRae, B. (1998). The compensation convention: Path to a global regime for dealing with legal liability and compensation for nuclear damage. Nuclear Law Bulletin, 61, 25–38.

    Google Scholar 

  • Michaelides, E. E., & Michaelides, D. N. (2020). Impact of nuclear energy on fossil fuel substitution. Nuclear Engineering and Design, 366. https://doi.org/10.1016/j.nucengdes.2020.110742

  • Mohan, M. P. R. (2015). Nuclear energy and liability in South Asia: Institutions, legal frameworks and risk assessment within SAARC. Nuclear Energy and Liability in South Asia: Institutions, Legal Frameworks and Risk Assessment Within SAARC. https://doi.org/10.1007/978-81-322-2343-6

    Book  Google Scholar 

  • Noah, S. (2008). Beyond the liability wall: Strengthening tort remedies in international environmental law. UCLA Law Review.

    Google Scholar 

  • Nukusheva, A., Karzhassova, G., Rustembekova, D., Tatyana, A., & Baikenzhina, K. (2021). International nuclear energy legal regulation: Comparing the experience of the EU and the CIS countries. International Environmental Agreements: Politics, Law and Economics, 21. https://doi.org/10.1007/s10784-021-09539-2

  • Palombo, D. (2019). The duty of care of the parent company: A comparison between French law, UK Precedents and the Swiss Proposals. Business and Human Rights Journal. https://doi.org/10.1017/bhj.2019.15

  • Paris Convention on Nuclear Third Party Liability. https://www.oecd-nea.org/law/paris-convention.html.

  • Pelzer, N. (2016). Nuclear accidents: Models for reparation. In Nuclear non-proliferation in international law – Volume III: Legal aspects of the use of nuclear energy for peaceful purposes. https://doi.org/10.1007/978-94-6265-138-8_12.

  • Peng, B. S., Xia, H., Liu, Y. K., Yang, B., Guo, D., & Zhu, S. M. (2018). Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network. Progress in Nuclear Energy. https://doi.org/10.1016/j.pnucene.2018.06.003

  • Perc, M., Ozer, M., & Hojnik, J. (2019). Social and juristic challenges of artificial intelligence. Palgrave Communications. https://doi.org/10.1057/s41599-019-0278-x

  • Pinheiro, V. H. C., & Schirru, R. (2019). Genetic programming applied to the identification of accidents of a PWR nuclear power plant. Annals of Nuclear Energy. https://doi.org/10.1016/j.anucene.2018.09.039

  • Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). Machine learning in materials informatics: Recent applications and prospects. NPJ Computational Materials. https://doi.org/10.1038/s41524-017-0056-5

  • Rosa, E. A., & Dunlap, R. E. (1994). The Polls: The polls–poll trends: Nuclear power: three decades of public opinion. Public Opinion Quarterly, 58. https://doi.org/10.1086/269425

  • Sachs, J. D., Woo, W. T., Yoshino, N., & Taghizadeh-Hesary, F. (2019). Importance of green finance for achieving sustainable development goals and energy security. In Handbook of green finance. https://doi.org/10.1007/978-981-13-0227-5_13

  • Safarzadeh, O., Zolfaghari, A., Zangian, M., & Noori-Kalkhoran, O. (2014). Pattern optimization of PWR reactor using hybrid parallel Artificial Bee Colony. Annals of Nuclear Energy. https://doi.org/10.1016/j.anucene.2013.08.011

  • Schwartz, J. A. 2006. International nuclear third party liability law: The response to Chernobyl.

    Google Scholar 

  • Seremeti, Lambrini, & Ioannis Kougias. (2019). Legal issues within ambient intelligence environments. In 10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019. https://doi.org/10.1109/IISA.2019.8900748.

  • Shiffrin, S. V. (2016). Enhancing moral relationships through strict liability. University of Toronto Law Journal. https://doi.org/10.3138/UTLJ.3808

  • Solum, L. B. (2020). Legal personhood for artificial intelligences. Machine Ethics and Robot Ethics. https://doi.org/10.4324/9781003074991-37

  • Stambaugh, R. D., Chan, V. S., Garofalo, A. M., Sawan, M., Humphreys, D. A., Lao, L. L., Leuer, J. A., et al. (2011). Fusion nuclear science facility candidates. Fusion Science and Technology. https://doi.org/10.13182/fst59-279

  • Sullivan, H. R., & Schweikart, S. J. (2019). Are current tort liability doctrines adequate for addressing injury caused by AI? AMA Journal of Ethics. https://doi.org/10.1001/amajethics.2019.160

  • Suman, S. (2021). Artificial intelligence in nuclear industry: Chimera or solution? Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.124022

  • Taghizadeh-Hesary, F., Yoshino, N., & Rasoulinezhad, E. (2017). Impact of the Fukushima nuclear disaster on the oil-consuming sectors of Japan. Journal of Comparative Asian Development, 16. https://doi.org/10.1080/15339114.2017.1298457

  • Udum, S. (2017). Nuclear energy and international relations: Outlook and challenges for newcomers. Perceptions.

    Google Scholar 

  • Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K. L. A., Elkhatib, Y., Hussain, A., & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2916648

  • Visschers, V. H. M., Keller, C., & Siegrist, M. (2011). Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model. Energy Policy, 39. https://doi.org/10.1016/j.enpol.2011.03.064

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridoan Karim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karim, R., Muhammad-Sukki, F. (2022). Artificial Intelligence (AI) in the Nuclear Power Plants: Who Is Liable When AI Fails to Perform. In: Taghizadeh-Hesary, F., Zhang, D. (eds) The Handbook of Energy Policy. Springer, Singapore. https://doi.org/10.1007/978-981-16-9680-0_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9680-0_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9680-0

  • Online ISBN: 978-981-16-9680-0

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics