Skip to main content

Fullerenes Violating the Isolated Pentagon Rule

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

Fullerenes are cage-shaped carbon clusters. Compared with the vast number of theoretically possible fullerene isomers, only quite a few of them were obtained experimentally. It is due to the constraint of the isolated pentagon rule (IPR), which states that the fullerenes with isolated pentagons are stable, otherwise they are instable. The adjacent pentagons have unfavorable antiaromaticity and local strain. In terms of endohedral and exohedral derivatization, fullerenes with adjacent pentagons can be stabilized. Following these stabilization principles, the synthetic routes to non-IPR fullerenes nowadays include the metal-doped arc discharge, chlorine or hydrogen-involved arc discharge, low-pressure combustion, chlorine-involved radio frequency furnace, and postfunctionalization-promoted cage transformation. Based on these methods, more than 60 members of non-IPR fullerenes were synthesized and characterized from C20 to C102. These non-IPR fullerenes are vital for understanding the mechanism of fullerene formation, but also provide novel basic building blocks for fullerene materials. Based on the structures of prepared non-IPR fullerenes, the stabilization of fused pentagons was well understood, which can guide the synthesis of non-IPR fullerenes in the future. After the decades of research, the non-IPR fullerenes have been a hot field in the fullerene science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, Oxford

    Google Scholar 

  3. Kroto HW (1987) The stability of the fullerenes Cn, with n=24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  4. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1986) Sixty-carbon-atom carbon cages. Chem Phys Lett 130:203–207

    Article  CAS  Google Scholar 

  5. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) Elemental carbon cages. J Am Chem Soc 110:1113–1127

    Article  CAS  Google Scholar 

  6. Haddon RC (1987) Pyramidalization: geometrical interpretation of the pi-orbital axis vector in three dimensions. J Phys Chem 91:3719–3720

    Article  CAS  Google Scholar 

  7. Haddon RC (1988) P-electrons in three dimensiona. Acc Chem Res 21:243–249

    Article  CAS  Google Scholar 

  8. Wang CR et al (2000) Materials science – C66 fullerene encaging a scandium dimer. Nature 408:426–427

    Article  CAS  PubMed  Google Scholar 

  9. Stevenson S et al (2000) A stable non-classical metallofullerene family. Nature 408:427–428

    Article  CAS  PubMed  Google Scholar 

  10. Tan YZ, Xie SY, Huang RB, Zheng LS (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460

    Article  CAS  PubMed  Google Scholar 

  11. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41:7723–7760

    Article  PubMed  Google Scholar 

  12. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    Article  CAS  PubMed  Google Scholar 

  13. Yang S, Wei T, Jin F (2017) When metal clusters meet carbon cages: endohedral clusterfullerenes. Chem Soc Rev 46:5005–5058

    Article  CAS  PubMed  Google Scholar 

  14. Yamada M, Akasaka T, Nagase S (2018) Salvaging reactive fullerenes from soot by exohedral derivatization. Angew Chem Int Ed 57:13394–13405

    Article  CAS  Google Scholar 

  15. Jin P, Li Y, Magagula S, Chen Z (2019) Exohedral functionalization of endohedral metallofullerenes: interplay between inside and outside. Coord Chem Rev 388:406–439

    Article  CAS  Google Scholar 

  16. Yang S, Ioffe IN, Troyanov SI (2019) Chlorination-promoted skeletal transformations of fullerenes. Acc Chem Res 52:1783–1792

    Article  CAS  PubMed  Google Scholar 

  17. Yao Y, Xie S (2019) Structures and progress of carbon clusters. Progr Chem 31:50–62

    CAS  Google Scholar 

  18. Guan R, Chen M, Jin F, Yang S (2020) Strain release of fused pentagons in fullerene cages by chemical functionalization. Angew Chem Int Ed 59:1048–1073

    Article  CAS  Google Scholar 

  19. Campanera JM, Bo C, Poblet JM (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44:7230–7233

    Article  CAS  Google Scholar 

  20. Yang S, Rapta P, Dunsch L (2007) The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68. Chem Commun 2:189–191

    Article  Google Scholar 

  21. Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n=68–98): a density functional theory study. J Am Chem Soc 129:11835–11849

    Article  CAS  PubMed  Google Scholar 

  22. Nagase S, Kobayashi K, Akasaka T (1999) Unconventional cage structures of endohedral metallofullerenes. Theochem J Mol Struct 461–462:97–104

    Article  Google Scholar 

  23. Shi ZQ, Wu X, Wang CR, Lu X, Shinohara H (2006) Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111

    Article  CAS  Google Scholar 

  24. Iiduka Y et al (2005) Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127:12500–12501

    Article  CAS  PubMed  Google Scholar 

  25. Dunsch L, Yang S (2007) Endohedral clusterfullerenes-playing with cluster and cage sizes. Phys Chem Chem Phys 9:3067–3081

    Article  CAS  PubMed  Google Scholar 

  26. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320

    Article  CAS  PubMed  Google Scholar 

  27. Olmstead MM et al (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem Int Ed 40:1223–1225

    Article  CAS  Google Scholar 

  28. Cai T et al (2007) Sc3N@C78: encapsulated cluster regiocontrol of adduct docking on an ellipsoidal metallofullerene sphere. J Am Chem Soc 129:10795–10800

    Article  CAS  PubMed  Google Scholar 

  29. Popov AA, Krause M, Yang S, Wong J, Dunsch L (2007) C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J Phys Chem B 111:3363–3369

    Article  CAS  PubMed  Google Scholar 

  30. Osuna S, Swart M, Sola M (2009) The Diels-Alder reaction on endohedral Y3N@C78: the importance of the fullerene strain energy. J Am Chem Soc 131:129–139

    Article  CAS  PubMed  Google Scholar 

  31. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131:11519–11524

    Article  CAS  PubMed  Google Scholar 

  32. Akasaka T et al (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Int Ed Engl 36:1643–1645

    Google Scholar 

  33. Stevenson S et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57

    Article  CAS  Google Scholar 

  34. Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR cage of Sc3N@C70. Angew Chem Int Ed 46:1256–1259

    Article  CAS  Google Scholar 

  35. Yang S, Popov AA, Dunsch L (2007) The role of an asymmetric nitride cluster on a fullerene cage: the non-IPR endohedral DySc2N@C76. J Phys Chem B 111:13659–13663

    Article  CAS  PubMed  Google Scholar 

  36. Summerscales OT (2006) The organometallic chemistry of pentalene. Coord Chem Rev 250:1122

    Article  CAS  Google Scholar 

  37. Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. Wiley-VCH Verlag GmbH & Co. KGaA, London

    Google Scholar 

  38. Petrie S, Bohme DK (1993) Enhanced reactivity of fullerene cations containing adjacent pentagons. Nature 365:426–429

    Article  CAS  Google Scholar 

  39. Kroto HW, Walton DRM (1993) Stable derivatives of small fullerenes. Chem Phys Lett 214:353–356

    Article  CAS  Google Scholar 

  40. Xie SY et al (2004) Capturing the labile fullerene[50] as C50Cl10. Science 304:699–699

    Article  CAS  PubMed  Google Scholar 

  41. Han X et al (2008) Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of double- and triple-pentagon-fused chlorofullerenes. Angew Chem Int Ed 47:5340–5343

    Article  CAS  Google Scholar 

  42. Haddon RC (1993) Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science 261:1545–1550

    Article  CAS  PubMed  Google Scholar 

  43. Aihara, J.-i. (1995) Bond resonance energy and verification of the isolated pentagon rule. J Am Chem Soc 117:4130–4136

    Article  Google Scholar 

  44. Aihara J-I, Oe S, Yoshida M, Osawa E (1996) Further test of the isolated pentagon rule: thermodynamic and kinetic stabilities of C84 fullerene isomers. J Comput Chem 17:1387–1394

    Article  CAS  Google Scholar 

  45. Tan YZ et al (2008) Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nat Mater 7:790–794

    Article  CAS  PubMed  Google Scholar 

  46. Taylor R (2000) Surprises, serendipity, and symmetry in fullerene chemistry. Synlett 6:776–793

    Google Scholar 

  47. Taylor R (2004) Why fluorinate fullerenes? J Fluor Chem 125:359–368

    Article  CAS  Google Scholar 

  48. Simeonov KS, Amsharov KY, Jansen M (2009) C80Cl12: a chlorine derivative of the chiral D2-C80 isomer – empirical rationale of halogen-atom addition pattern. Chem Eur J 15:1812–1815

    Article  CAS  PubMed  Google Scholar 

  49. Simeonov KS, Amsharov KY, Jansen M (2007) Connectivity of the chiral D2-symmetric isomer of C76 through a crystal-structure determination of C76Cl18TiCl4. Angew Chem Int Ed 46:8419–8421

    Article  CAS  Google Scholar 

  50. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in Ih symmetrical fullerenes: the 2(N+1)2 rule. Angew Chem Int Ed 39:3915–3917

    Article  CAS  Google Scholar 

  51. Chen J-H et al (2012) Combustion synthesis and electrochemical properties of the small hydrofullerene C50H10. Chem Eur J 18:3408–3415

    Article  CAS  PubMed  Google Scholar 

  52. Lu X, Chen ZF (2005) Curved p-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem Rev 105:3643–3696

    Article  CAS  PubMed  Google Scholar 

  53. Chen DL, Tian WQ, Feng JK, Sun CC (2007) Structures, stabilities, and electronic and optical properties of C52 fullerene, ions, and metallofullerenes. J Chem Phys 126:074313

    Article  PubMed  Google Scholar 

  54. Sun L, Chang Y, Tang S, Wang R (2008) Theoretical studies on structures and stabilities of C2-C52X2 (X=H, F, and Cl) isomers. Chem Phys Lett 464:113–117

    Article  CAS  Google Scholar 

  55. Alcami M, Sanchez G, Diaz-Tendero S, Wang Y, Martin F (2007) Structural patterns in fullerenes showing adjacent pentagons: C20 to C72. J Nanosci Nanotechnol 7:1329–1338

    Article  CAS  PubMed  Google Scholar 

  56. Gao X, Zhao Y (2007) The way of stabilizing non-IPR fullerenes and structural elucidation of C54Cl8. J Comput Chem 28:795–801

    Article  CAS  PubMed  Google Scholar 

  57. Chen DL, Tian WQ, Feng JK, Sun CC (2007) Structures and electronic properties of C56Cl8 and C56Cl10 fullerene compounds. ChemPhysChem 8:2386–2390

    Article  CAS  PubMed  Google Scholar 

  58. Chen D-L, Tian WQ, Feng J-K, Sun C-C (2008) Theoretical investigation of C56 fullerene isomers and related compounds. J Chem Phys 128:044318/044311-044318/044317

    Article  Google Scholar 

  59. Chen DL, Tian WQ, Feng JK, Sun CC (2007) Structures, stabilities, and electronic and optical properties of C58 fullerene isomers, ions, and metallofullerenes. ChemPhysChem 8:1029–1036

    Article  CAS  PubMed  Google Scholar 

  60. Ayuela A et al (1996) C62: theoretical evidence for a nonclassical fullerene with a heptagonal ring. J Phys Chem 100:15634–15636

    Article  CAS  Google Scholar 

  61. Cui Y-H, Chen D-L, Tian WQ, Feng J-K (2007) Structures, stabilities, and electronic and optical properties of C62 fullerene isomers. J Phys Chem A 111:7933–7939

    Article  CAS  PubMed  Google Scholar 

  62. Sun LL, Tang SW, Chang YF, Wang ZL, Wang RS (2008) Searching for stable hept-C62X2 (X = F, Cl, and Br): structures and stabilities of heptagon-containing C62 halogenated derivatives. J Comput Chem 29:2631–2635

    Article  CAS  PubMed  Google Scholar 

  63. Cui Y-H, Tian WQ, Feng J-K, Chen D-L (2008) Structures, stabilities, electronic, and optical properties of C64 fullerene isomers, anions (C2-64 and C4-64), metallofullerene Sc2@C64, and Sc2C2@C64. J Comput Chem 29:2623–2630

    Article  CAS  PubMed  Google Scholar 

  64. Gan L-H et al (2011) Geometrical and electronic rules in fullerene-based compounds. Chem Asian J 6:1304–1314

    Article  CAS  PubMed  Google Scholar 

  65. Song X, Li X, Qi J (2018) Theoretical studies on the structural and spectral properties of two specific C-54 isomers and the chlorinated species C54Cl8. RSC Adv 8:32731–32739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mao R, Wang Z, Song X, Chen W-K, Qi J (2021) Structural and spectral properties of a nonclassical C-66 isomer with its hydrogenated derivative C66H4 in theory. ACS Omega 6:27101–27111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song X, Mao R, Wang Z, Qi J (2021) Structural and spectral properties of a non-classical C-58 isomer and its fluorinated derivatives in theory. RSC Adv 11:1472–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Paquette LA (1982) Dodecahedrane – the chemical transliteration of Plato’s universe (A review). Proc Natl Acad Sci U S A 79:4495–4500

    Article  CAS  PubMed Central  Google Scholar 

  69. Paquette LA, Ternansky RJ, Balogh DW (1982) A strategy for the synthesis of monosubstituted dodecahedrane and the isolation of an isododecahedrane. J Am Chem Soc 104:4502–4503

    Article  CAS  Google Scholar 

  70. Ternansky RJ, Balogh DW, Paquette LA (1982) Dodecahedrane. J Am Chem Soc 104:4503–4504

    Article  CAS  Google Scholar 

  71. Wahl F, Woerth J, Prinzbach H (1993) The pagodane route to dodecahedranes: improved access to the C20H20 framework as well as partial and total functionalization. Does C20 fullerene exist? Angew Chem Int Ed Engl 32:1722–1726

    Article  Google Scholar 

  72. Prinzbach H, Weber K (1994) From insecticide to Plato’s universe – the pagodane route to dodecahedranes: new routes and new targets. Angew Chem Int Ed Engl 33:2239–2257

    Article  Google Scholar 

  73. Prinzbach H et al (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407:60–63

    Article  CAS  PubMed  Google Scholar 

  74. Wahl F et al (2006) Towards perfunctionalized dodecahedranes – en route to C20 fullerene. Chem Eur J 12:6255–6267

    Article  CAS  PubMed  Google Scholar 

  75. Piskoti C, Yarger J, Zettl A (1998) C36, a new carbon solid. Nature 393:771–774

    Article  CAS  Google Scholar 

  76. Koshio A, Inakuma M, Wang ZW, Sugai T, Shinohara H (2000) In situ laser-furnace TOF mass spectrometry of C36 and the large-scale production by arc-discharge. J Phys Chem B 104:7908–7913

    Article  CAS  Google Scholar 

  77. Koshio A, Inakuma M, Sugai T, Shinohara H (2000) A preparative scale synthesis of C36 by high-temperature laser-vaporization: purification and identification of C36H6 and C36H6O. J Am Chem Soc 122:398–399

    Article  CAS  Google Scholar 

  78. Lu X et al (2004) Properties of fullerene[50] and D5h decachlorofullerene[50]: a computational study. J Am Chem Soc 126:14871–14878

    Article  CAS  PubMed  Google Scholar 

  79. Tan YZ et al (2010) Chlorofullerenes featuring triple sequentially fused pentagons. Nat Chem 2:269–273

    Article  CAS  PubMed  Google Scholar 

  80. Tan YZ et al (2008) An entrant of smaller fullerene: C56 captured by chlorines and aigned in linear chains. J Am Chem Soc 130:15240–15241

    Article  CAS  PubMed  Google Scholar 

  81. Ziegler K, Mueller A, Amsharov KY, Jansen M (2011) Capturing the most-stable C56 fullerene cage by in situ chlorination. Chem Asian J 6:2412–2418

    Article  CAS  PubMed  Google Scholar 

  82. Zhou T et al (2011) Retrieving the most prevalent small fullerene C56. Chem Eur J 17:8529–8532

    Article  CAS  PubMed  Google Scholar 

  83. Troshin PA et al (2005) Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18. Science 309:278–281

    Article  CAS  PubMed  Google Scholar 

  84. Weng QH et al (2010) Simple combustion production and characterization of octahydro 60 fullerene with a non-IPR C-60 cage. J Am Chem Soc 132:15093–15095

    Article  CAS  PubMed  Google Scholar 

  85. Brotsman VA et al (2018) Rebuilding C60: chlorination-promoted transformations of the buckminsterfullerene into pentagon-fused C60 derivatives. Inorg Chem 57:8325–8331

    Article  CAS  PubMed  Google Scholar 

  86. Tamm NB, Markov VY, Troyanov SI (2021) Trifluoromethyl derivatives of pentagon-fused C60: 1809C60(CF3)n (n = 10, 12, 14, 16). Dalton Trans 50:5765–5769

    Article  CAS  PubMed  Google Scholar 

  87. Vysochanskaya ON, Brotsman VA, Goryunkov AA, Feiler CG, Troyanov SI (2020) Fused-pentagon isomers of C60 fullerene isolated as chloro and trifluoromethyl derivatives. Chem Eur J 26:2338–2341

    Article  CAS  PubMed  Google Scholar 

  88. Tamm NB, Brotsman VA, Sidorov LN, Troyanov SI (2021) Chloro- and trifluoromethyl derivatives of a pentagon-fused C-60:(C60Cl24)-C-1810, (C60Cl20)-C-1810, and C-1810(60)(CF3)(14). Inorg Chem 60:6991–6993

    Article  CAS  PubMed  Google Scholar 

  89. Qian WY et al (2000) C62, a non-classical fullereneincorporating a four-membered ring. J Am Chem Soc 122:8333–8334

    Article  CAS  Google Scholar 

  90. Qian W et al (2003) Synthesis of stable derivatives of C62: the first nonclassical fullerene incorporating a four-membered ring. J Am Chem Soc 125:2066–2067

    Article  CAS  PubMed  Google Scholar 

  91. Wang CR et al (2006) C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610

    Article  CAS  PubMed  Google Scholar 

  92. Gao ZY et al (2010) Synthesis of C3v – #1911C64H4 using a low-pressure benzene/oxygen diffusion flame: another pathway toward non-IPR fullerenes. Combust Flame 157:966–969

    Article  CAS  Google Scholar 

  93. Yamada M et al (2014) Sc2@C66 revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear Triquinanes. J Am Chem Soc 136:7611–7614

    Article  CAS  PubMed  Google Scholar 

  94. Gao C-L et al (2014) Synthesis of long-sought C66 with exohedral stabilization. Angew Chem Int Ed 53:7853–7855

    Article  CAS  Google Scholar 

  95. Tian H-R et al (2019) An unconventional hydrofullerene C66H4 with symmetric heptagons retrieved in low-pressure combustion. J Am Chem Soc 141:6651–6657

    Article  CAS  PubMed  Google Scholar 

  96. Kobayashi K, Nagase S (2002) A stable unconventional structure of Sc-2@C-66 found by density functional calculations. Chem Phys Lett 362:373–379

    Article  CAS  Google Scholar 

  97. Tan YZ et al (2011) Carbon arc production of heptagon-containing fullerene[68]. Nat Commun 2:1431–1436

    Article  Google Scholar 

  98. Amsharov KY, Ziegler K, Mueller A, Jansen M (2012) Capturing the antiaromatic #6094C68 carbon cage in the radio-frequency furnace. Chem Eur J 18:9289–9293

    Article  CAS  PubMed  Google Scholar 

  99. Chen D-L, Tian WQ, Feng J-K, Sun C-C (2008) C68 fullerene isomers, anions, and their metallofullerenes: charge-stabilizing different isomers. ChemPhysChem 9:454–461

    Article  CAS  PubMed  Google Scholar 

  100. Brotsman VA, Ioffe IN, Troyanov SI (2022) Crippling the C70 fullerene: non-classical C68Cl26(OH)2 and C68Cl25(OH)3 with three heptagons and only fused pentagons via chlorination-promoted skeletal transformations. Chem Commun 58:6918–6921

    Article  CAS  Google Scholar 

  101. Olmstead MM et al (2003) Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem Int Ed 42:900–903

    Article  CAS  Google Scholar 

  102. Zheng H, Zhao X, Wang WW, Yang T, Nagase S (2012) Sc-2@C-70 rather than Sc2C2@C-68: density functional theory characterization of metallofullerene Sc2C70. J Chem Phys 137:014308

    Article  PubMed  Google Scholar 

  103. Tan YZ et al (2013) Exohedrally stabilized C-70 isomer with adjacent pentagons characterized by crystallography. Chem Sci 4:2967–2970

    Article  CAS  Google Scholar 

  104. Zhong Y-Y et al (2019) Double negatively curved C70 growth through a heptagon-involving pathway. Angew Chem Int Ed 58:14095–14099

    Article  CAS  Google Scholar 

  105. Feng L et al (2016) Endohedrally stabilized C70 isomer with fused pentagons characterized by crystallography. Dalton Trans 45:8142–8148

    Article  CAS  PubMed  Google Scholar 

  106. Chen N et al (2013) Sc2S@C2(7892)–C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4:180–186

    Article  Google Scholar 

  107. Brotsman VA, Kemnitz E, Troyanov SI (2019) Fused-pentagon C70Cl26 obtained via chlorination-promoted Stone–Wales cage transformations of C70. Chem Commun 55:13378–13381

    Article  CAS  Google Scholar 

  108. Tamm NB, Brotsman VA, Markov VY, Troyanov SI (2020) Fused-pentagon C70Cl6 and C70Cl8 obtained via chlorination-promoted skeletal transformation of IPR C70. Inorg Chem 59:10400–10403

    Article  CAS  PubMed  Google Scholar 

  109. Slanina Z, Ishimura K, Kobayashi K, Nagase S (2004) C72 isomers: the IPR-satisfying cage is disfavored by both energy and entropy. Chem Phys Lett 384:114–118

    Article  CAS  Google Scholar 

  110. Tan YZ et al (2010) C72Cl4: a pristine fullerene with favorable pentagon-adjacent structure. J Am Chem Soc 132:17102–17104

    Article  CAS  PubMed  Google Scholar 

  111. Ziegler K, Mueller A, Amsharov KY, Jansen M (2010) Disclosure of the elusive C2v-C72 carbon cage. J Am Chem Soc 132:17099–17101

    Article  CAS  PubMed  Google Scholar 

  112. Kato H, Taninaka A, Sugai T, Shinohara H (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125:7782–7783

    Article  CAS  PubMed  Google Scholar 

  113. Lu X et al (2008) Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72. J Am Chem Soc 130:9129–9136

    Article  CAS  PubMed  Google Scholar 

  114. Wakahara T et al (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229

    Article  CAS  PubMed  Google Scholar 

  115. Chen N et al (2012) Sc2S@Cs(10528)-C72: a Dimetallic Sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc J Am Chem Soc 134:7851–7860

    Article  CAS  PubMed  Google Scholar 

  116. Feng Y et al (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs–C72. Nanoscale 5:6704–6707

    Article  CAS  PubMed  Google Scholar 

  117. Gao C-L et al (2016) Capturing the fused-pentagon C-74 by stepwise chlorination. Inorg Chem 55:6861–6865

    Article  CAS  PubMed  Google Scholar 

  118. Liu A et al (2019) Ho2O@C74: Ho2O cluster expands within a small non-IPR fullerene cage of C2(13333)-C74. Inorg Chem 58:4774–4781

    Article  CAS  PubMed  Google Scholar 

  119. Suzuki M et al (2013) La2@Cs(17 490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal–pentalene interactions. Chem Eur J 19:17125–17130

    Article  CAS  PubMed  Google Scholar 

  120. Liu F et al (2017) Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew Chem Int Ed 56:1830–1834

    Article  CAS  Google Scholar 

  121. Hao Y et al (2015) Sm@C2v(19138)-C76: a non-IPR cage stabilized by a divalent metal ion. Inorg Chem 54:4243–4248

    Article  CAS  PubMed  Google Scholar 

  122. Cai W et al (2018) Synthesis and characterization of non-isolated-pentagon-rule actinide endohedral metallofullerenes U@C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: low-symmetry cage selection directed by a tetravalent ion. J Am Chem Soc 140:18039–18050

    Article  CAS  PubMed  Google Scholar 

  123. Ioffe IN et al (2009) Fusing pentagons in a fullerene cage by chlorination: IPR D2-C76 rearranges into non-IPR C76Cl24. Angew Chem Int Ed 48:5904–5907

    Article  CAS  Google Scholar 

  124. Sudarkova SM, Mazaleva ON, Konoplev-Esgenburg RA, Troyanov SI, Ioffe IN (2018) Versatility of chlorination-promoted skeletal transformation pathways in C76 fullerene. Dalton Trans 47:4554–4559

    Article  CAS  PubMed  Google Scholar 

  125. Tamm NB, Brotsman VA, Markov VY, Kemnitz E, Troyanov SI (2018) Chlorination-promoted skeletal transformation of IPR C76 discovered via trifluoromethylation under the formation of non-IPR C76(CF3)nFm. Dalton Trans 47:6898–6902

    Article  CAS  PubMed  Google Scholar 

  126. Brotsman VA, Ignat’eva DV, Troyanov SI (2017) Chlorination-promoted transformation of isolated pentagon rule C78 into fused-pentagons- and heptagons-containing fullerenes. Chem Asian J 12:2379–2382

    Article  CAS  PubMed  Google Scholar 

  127. Tan YZ et al (2010) Pentagon-fused hollow fullerene in C78 family retrieved by chlorination. J Am Chem Soc 132:12648–12652

    Article  CAS  PubMed  Google Scholar 

  128. Zhang J et al (2013) Enhanced dipole moments in trimetallic nitride template endohedral metallofullerenes with the pentalene motif. J Am Chem Soc 135:3351–3354

    Article  CAS  PubMed  Google Scholar 

  129. Wei T et al (2015) An expanded family of dysprosium–scandium mixed-metal nitride clusterfullerenes: the role of the lanthanide metal on the carbon cage size distribution. Chem Eur J 21:5750–5759

    Article  CAS  PubMed  Google Scholar 

  130. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C-2(22010)-C-78 departs from the isolated pentagon rule. J Am Chem Soc 131:11519–11524

    Article  CAS  PubMed  Google Scholar 

  131. Zhang Y et al (2015) Synthesis and structure of LaSc2N@Cs(hept)-C80 with one heptagon and thirteen pentagons. Angew Chem Int Ed 54:495–499

    CAS  Google Scholar 

  132. Yu P et al (2022) An unprecedented C80 cage that violates the isolated pentagon rule. Inorg Chem Front 9:2264–2270

    Article  CAS  Google Scholar 

  133. Mercado BQ et al (2008) Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene-Gd3N @ Cs(39663)-C82. J Am Chem Soc 130:7854–7855

    Article  CAS  PubMed  Google Scholar 

  134. Zuo T et al (2008) New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@Cs(51 365)-C84 and Gd3N@Cs(51 365)-C84. Chem Commun 9:1067–1069

    Article  Google Scholar 

  135. Beavers CM et al (2006) Tb3N@C-84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353

    Article  CAS  PubMed  Google Scholar 

  136. Zhang J et al (2013) A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nat Chem 5:880–885

    Article  CAS  PubMed  Google Scholar 

  137. Chen C-H et al (2016) Zigzag Sc2C2 carbide cluster inside a [88]fullerene cage with one heptagon, Sc2C2@Cs(hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138:13030–13037

    Article  CAS  PubMed  Google Scholar 

  138. Wei T, Yang S, Kemnitz E, Troyanov SI (2015) Two successive C2 losses from C86 fullerene upon chlorination with the formation of non-classical C84Cl30 and C82Cl30. Chem Asian J 10:559–562

    Article  CAS  PubMed  Google Scholar 

  139. Ioffe IN et al (2010) Chlorination of C86 to C84Cl32 with nonclassical heptagon-containing fullerene cage formed by cage shrinkage. Angew Chem Int Ed 49:4784–4787

    Article  CAS  Google Scholar 

  140. Jin F, Yang S, Kemnitz E, Troyanov SI (2017) Skeletal transformation of a classical fullerene C88 into a nonclassical fullerene chloride C84Cl30 bearing quaternary sequentially fused pentagons. J Am Chem Soc 139:4651–4654

    Article  CAS  PubMed  Google Scholar 

  141. Yang S, Wei T, Scheurell K, Kemnitz E, Troyanov SI (2015) Chlorination-promoted skeletal-cage transformations of C88 fullerene by C2 losses and a C-C bond rotation. Chem Eur J 21:15138–15141

    Article  CAS  PubMed  Google Scholar 

  142. Ioffe IN et al (2013) Cage shrinkage of fullerene via a C2 loss: from IPR C90(28)Cl24 to nonclassical, heptagon-containing C88Cl22/24. Inorg Chem 52:13821–13823

    Article  CAS  PubMed  Google Scholar 

  143. Guan R, Jin F, Yang S, Tamm NB, Troyanov SI (2019) Stable C92(26) and C92(38) as well as unstable C92(50) and C92(23) isolated-pentagon-rule isomers as revealed by chlorination of C92 fullerene. Inorg Chem 58:5393–5396

    Article  CAS  PubMed  Google Scholar 

  144. Ioffe IN et al (2012) Skeletal transformation of isolated pentagon rule (IPR) fullerene C82 into non-IPR C82Cl28 with notably low activation barriers. Inorg Chem 51:11226–11228

    Article  CAS  PubMed  Google Scholar 

  145. Tamm NB, Guan R, Yang S, Kemnitz E, Troyanov SI (2019) Chlorination-promoted cage transformation of IPR C92 discovered via trifluoromethylation under formation of non-classical C92(NC)(CF3)22. Chem Asian J 14:2108–2111

    Article  CAS  PubMed  Google Scholar 

  146. Yang S et al (2014) Structures of chlorinated fullerenes, IPR C96Cl20 and non-classical C94Cl28 and C92Cl32: evidence of the existence of three new isomers of C96. Chem Asian J 9:3102–3105

    Article  CAS  PubMed  Google Scholar 

  147. Ioffe IN et al (2015) C100 is converted into C94Cl22 by three chlorination-promoted C2 losses under formation and elimination of cage heptagons. Chem Eur J 21:4904–4907

    Article  CAS  PubMed  Google Scholar 

  148. Yang S, Wang S, Kemnitz E, Troyanov SI (2014) Chlorination of IPR C100 fullerene affords unconventional C96Cl20 with a nonclassical cage containing three heptagons. Angew Chem Int Ed 53:2460–2463

    Article  CAS  Google Scholar 

  149. Wang S, Yang S, Kemnitz E, Troyanov SI (2016) New isolated-pentagon-rule and skeletally transformed isomers of C100 fullerene identified by structure elucidation of their chloro derivatives. Angew Chem Int Ed 55:3451–3454

    Article  CAS  Google Scholar 

  150. Mazaleva ON et al (2018) Experimental and theoretical approach to variable chlorination-promoted skeletal transformations in fullerenes: the case of C102. Inorg Chem 57:4222–4225

    Article  CAS  PubMed  Google Scholar 

  151. Yang S et al (2013) The first structural confirmation of a C102 fullerene as C102Cl20 containing a non-IPR carbon cage. Chem Commun 49:7944–7946

    Article  CAS  Google Scholar 

  152. Beavers CM et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Zhi Tan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, ZC., Tan, YZ., Xie, SY. (2022). Fullerenes Violating the Isolated Pentagon Rule. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_5

Download citation

Publish with us

Policies and ethics