Skip to main content

Superconductivity

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 411 Accesses

Abstract

A molecule of C60 discovered as a new type of carbon has high symmetry and a large hollow inside. The crystal forming from this molecule consists of five- and triple-fold degeneracy in the valence and the conduction band. Various exotic properties are expected from this molecule and its derived crystals. Actually, very intriguing metallicity and superconductivity with high critical temperature are observed in these 30 years, the latter of which surpasses the superconducting critical temperature of organic superconductors and beyond the limit of the conventional Bardeen-Cooper-Schrieffer (BCS) theory. In this chapter, the history and advancement of the C60 superconductivity is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamerlingh Onnes H (2010) Further experiments with liquid helium. D. On the change of electric resistance of pure metals at very low temperatures. The disappearance of the resistance of mercury. Comm Phys Lab Univ Leiden; No. 122b, 1911.; Dirk van Delft, Peter Kes, the discovery of superconductivity. Phys Today 63:38–43. https://doi.org/10.1063/1.3490499

    Article  Google Scholar 

  2. Bardeen J, Cooper LN, Schrieffer JR (1957) Microscopic theory of superconductivity. Phys Rev 106:162–164. https://doi.org/10.1103/PhysRev.106.162; Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175–1204. https://doi.org/10.1103/PhysRev.108.1175

    Article  CAS  Google Scholar 

  3. Bednorz JG, Müller KA (1986) Possible high Tc superconductivity in the Ba−La−Cu−O system. Z Phys B 64:189–193. https://doi.org/10.1007/BF01303701. S2CID 118314311

    Article  CAS  Google Scholar 

  4. Hebard F, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Superconductivity at 18 K in potassium-doped C60. Nature 350(6319):600. https://doi.org/10.1038/350600a0

    Article  CAS  Google Scholar 

  5. Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H (2006) Iron-based layered superconductor: LaOFeP. J Am Chem Soc 128(31):10012–10013. https://doi.org/10.1021/ja063355c

    Article  CAS  PubMed  Google Scholar 

  6. Drozdov P, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI (2015) Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525. https://doi.org/10.1038/nature14964

  7. Jérome D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J Phys Lett 41(4):95–98. https://doi.org/10.1051/jphyslet:0198000410409500

    Article  Google Scholar 

  8. Haddon RC, Hebard AF, Rosseinsky MJ, Murphy DW, Duclos SJ, Lyons KB, Miller B, Rosamilia JM, Fleming RM, Kortan AR, Glarum SH, Makhija AV, Muller AJ, Eick RH, Zahurak SM, Tycko R, Dabbagh G, Thiel FA (1991) Conducting films of C60 and C70 by alkali-metal doping. Nature 350(6316):320–322

    Article  CAS  Google Scholar 

  9. Stephens P, Mihaly L, Lee P et al (1991) Structure of single-phase superconducting K3C60. Nature 351:632–634. https://doi.org/10.1038/351632a0

    Article  CAS  Google Scholar 

  10. Rosseinsky MJ et al (1991) Superconductivity at 28K in RbxC60. Phys Rev Lett 66:2830–2832

    Article  CAS  Google Scholar 

  11. Tanigaki K, Ebbesen TW, Saito S, Mizuki J, Tsai JS, Kubo Y, Kuroshima S (1991) Superconductivity at 33 K in CsxRbyC60. Nature 352(6332):222–223. https://doi.org/10.1038/352222a0

    Article  CAS  Google Scholar 

  12. Tanigaki K, Hirosawa I, Ebbesen TW, Mizuki J, Shimakawa Y, Kubo Y, Tsai JS, Kuroshima S (1992) Superconductivity in sodium- and lithium-containing alkali-metal fullerides. Nature 356:419–421. https://doi.org/10.1038/356419a0

    Article  CAS  Google Scholar 

  13. Ganin Y, Takabayashi Y, Jeglič Y, Arčon D, Potočnik A, Baker PJ, Ohishi Y, McDonald MT, Tzirakis MD, McLennan A, Darling GR, Takata M, Rosseinsky MJ, Prassides K (2010) Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition. Nature 466:221–225. https://doi.org/10.1038/nature09120

    Article  CAS  PubMed  Google Scholar 

  14. Zadik RH, Takabayashi Y, Klupp G, Colman RH, Ganin AY, Potočnik A, Jeglič P, Arčon D, Matus P, Kamarás K, Kasaharam Y, Iwasa Y, Fitch AN, Ohishi Y, Garbarino G, Kato K, Rosseinsky MJ, Prassides K (2015) Optimized unconventional superconductivity in a molecular Jahn-Teller metal. Sci Adv 1:e1500059. https://doi.org/10.1126/sciadv.1500059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanigaki K (1993) Structure and properties of alkali-doped C60. Mater Sci Eng 19:135–140. https://doi.org/10.1016/0921-5107(93)90178-P

    Article  Google Scholar 

  16. Iwasa Y, Takenobu T (2003) Superconductivity, Mott Hubbard states, and molecular orbital order in intercalated fullerides. J Phys Condens Matter 15(13):R495–R519. https://doi.org/10.1088/0953-8984/15/13/202

    Article  CAS  Google Scholar 

  17. Takeda Y, Yokoyama S, Ito T, Miyazaki H, Shimotani K, Yakigaya T, Kakiuchi H, Sawa H, Takagi K, Kitazawa N (2006) Dragoe, superconductivity of doped Ar@C60. Chem Commun (Camb) 28:912–914. https://doi.org/10.1039/b514974f

    Article  CAS  Google Scholar 

  18. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyake Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Kumuro T, Tobita H (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683. https://doi.org/10.1038/nchem.698

    Article  CAS  PubMed  Google Scholar 

  19. Brown CM, Cristofolini L, Kordatos K, Prassides K, Bellavia C, González R, Wudl F, Cheetham AK, Zhang JP, Andreoni W, Curioni A, Fitch AN, Pattison P (1996) On the crystal structure of azafullerene (C59N)2. Chem Mater 8:2548–2550. https://doi.org/10.1021/Cm960354I

    Article  CAS  Google Scholar 

  20. Prassides K, Hummelen JC, Andreoni W, Giannozzi P, Beer E, Bellavia C, Cristofolini L, González R, Lappas A, Murata Y, Malecki M, Srdanov V, Wudl F (1996) Isolation, structure, and electronic calculations of the heterofullerene salt K6C59N. Science 271:1833–1835. https://doi.org/10.1126/Science.271.5257.1833

    Article  CAS  Google Scholar 

  21. Fleming RM, Ramirez AP, Rosseinsky MJ, Murphy DW, Haddon RC, Zahurak SM, Makhija AV (1991) Relation of structure and superconducting transition temperatures in A3C60. Nature 352:787–788. https://doi.org/10.1038/352787a0

    Article  CAS  Google Scholar 

  22. Kortan R, Kopylov N, Glarum S, Gyorgy EM, Ramirez AP, Fleming RM, Thiel FA, Haddon RC (1992) Superconductivity at 8.4 K in calcium-doped C60. Nature 355:529–532. https://doi.org/10.1038/355529a0

    Article  CAS  Google Scholar 

  23. Kortan R, Kopylov N, Glarum S, Gyogry EM, Ramirez AP, Zhou O, Thiel FA, Trevor PL, Haddon RC (1992) Superconductivity in barium fulleride. Nature 360:566–568. https://doi.org/10.1038/360566a0

    Article  CAS  Google Scholar 

  24. Gogia B, Kordatos K, Suematsu H, Tanigaki K, Prassides K (1998) Electronic states of Ba6C60 and Sr6C60 fullerides. Phys Rev B 58:1077. https://doi.org/10.1103/PhysRevB.58.1077

    Article  CAS  Google Scholar 

  25. Brown M, Taga S, Gogia B, Kordatos K, Margadonna S, Prassides K, Iwasa Y, Tanigaki K, Fitch AN, Pattison P (1999) Structural and electronic properties of the noncubic superconducting fullerides A′4C60 (A′ = Ba,Sr). Phys Rev Lett 1999(83):2258–2261. https://doi.org/10.1103/PhysRevLett.83.2258

    Article  Google Scholar 

  26. Saito S, Oshiyama A (1993) Electronic states of Ba6C60 and Sr6C60 fullerides. Phys Rev Lett 71:121. https://doi.org/10.1103/PhysRevLett.71.121

    Article  CAS  PubMed  Google Scholar 

  27. Özdaş E, Kortan AR, Kopylov N, Ramirez AP, Siegrist T, Rabe KM, Bair HE, Schuppler S, Citrin PH (1995) Superconductivity and cation-vacancy ordering in the rare-earth fulleride Yb2.75C60. Nature 375:126–129. https://doi.org/10.1038/375126a0

    Article  Google Scholar 

  28. Arvanitidis J, Papagelis K, Margadonna S, Prassides K, Fitch AN (2003) Temperature-induced valence transition and associated lattice collapse in samarium fulleride. Nature 425:599. https://doi.org/10.1038/nature01994

    Article  CAS  PubMed  Google Scholar 

  29. Akada M, Hirai T, Takeuchi J, Yamamoto T, Tanigaki K (2006) Superconducting phase sequence in RxC60 fullerides (R=Sm and Yb). Phys Rev B 73:094509. https://doi.org/10.1103/PhysRevB.73.094509

    Article  CAS  Google Scholar 

  30. Kortan R, Kopylov N, Ozdas E (1996) Proceedings of ECS meeting. Fullerenes 3:423–428

    Google Scholar 

  31. Akada M, Hirai T, Takeuchi J, Hiroshiba N, Kumashiro R, Yamamoto T, Tanigaki K (2005) Superconducting phase made from C60 doped with La. Phys Rev B 72:132505. https://doi.org/10.1103/PhysRevB.72.132505

    Article  CAS  Google Scholar 

  32. Saito S, Oshiyama A (1991) Cohesive mechanism and energy bands of solid C60. Phys Rev Lett 66:2637. https://doi.org/10.1103/PhysRevLett.66.2637

    Article  CAS  PubMed  Google Scholar 

  33. Kosaka M, Tanigaki K, Prassides K, Margadonna S, Lappas A, Brown C (1999) Superconductivity in LixCsC60 fullerides. Phys Rev B 59:R6628–R6630. https://doi.org/10.1103/PhysRevB.59.R6628

    Article  CAS  Google Scholar 

  34. Yildirim T, Barbedette L, Fischer JE, Lin CL, Robert J, Petit P, Palstra TTM (1996) Tc vs carrier concentration in cubic fulleride superconductors. Phys Rev Lett 77:167. https://doi.org/10.1103/PhysRevLett.77.167

    Article  CAS  PubMed  Google Scholar 

  35. Schluter M, Lannoo M, Needels M, Baraff GA, Tománek D (1992) Electron-phonon coupling and superconductivity in alkali-intercalated solid. Phys Rev Lett 68:526–529. https://doi.org/10.1103/PhysRevLett.68.526

    Article  CAS  PubMed  Google Scholar 

  36. Varma M, Zaanen J, Raghavachari K (1991) Superconductivity in the fullerenes. Science 254:989–992. https://doi.org/10.1126/science.254.5034.989

    Article  CAS  PubMed  Google Scholar 

  37. Gunnarsson O, Koch E, Martin RM (1998) Superconductivity in doped C60 compounds. In: Kresin VZ (ed) Pair correlations in many-fermion systems. Springer, Boston. https://doi.org/10.1007/978-1-4899-1555-9_10

    Chapter  Google Scholar 

  38. Gunnarsson O (1997) Superconductivity in fullerides. Rev Mod Phys 69:575. https://doi.org/10.1103/RevModPhys.69.575

    Article  CAS  Google Scholar 

  39. Capone M, Fabrizio M, Castellani C, Tosatti E (2009) Modeling the unconventional superconducting properties of expanded A3C60 fullerides. Rev Mod Phys 81:943–958. https://doi.org/10.1103/RevModPhys.81.943

    Article  Google Scholar 

  40. Capone M, Fabrizio M, Castellani C, Tosatti E (2002) Strongly correlated superconductivity. Science 296:2364–2366. https://doi.org/10.1126/science.1071122

    Article  CAS  PubMed  Google Scholar 

  41. Capone M, Fabrizio M, Castellani C, Tosatti E (2004) Strongly correlated superconductivity and pseudogap phase near a multiband Mott insulator. Phys Rev Lett 93:047001. https://doi.org/10.1103/PhysRevLett.93.047001

    Article  CAS  PubMed  Google Scholar 

  42. Nomura Y, Sakai S, Capone M, Arita R (2015) Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles. Sci Adv 1:e1500568. https://doi.org/10.1126/sciadv.1500568

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nomura Y, Arita R (2015) Ab initio downfolding for electron-phonon-coupled systems: constrained density-functional perturbation theory. Phys Rev B 92:245108. https://doi.org/10.1103/PhysRevB.92.245108

    Article  CAS  Google Scholar 

  44. Suhl H, Matthias BT, Walker LR (1959) Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys Rev Lett 3:552–554. https://doi.org/10.1103/PhysRevLett.3.552

    Article  CAS  Google Scholar 

  45. Kondo J (1963) Superconductivity in transition metals. Prog Theor Phys 29:1–9. https://doi.org/10.1143/PTP.29.1

    Article  CAS  Google Scholar 

  46. Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Riccò M, Clark SR, Jaksch D, Cavalleri A (2016) Possible light-induced superconductivity in K3C60 at high temperature. Nature 530:461–464. https://doi.org/10.1038/nature16522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Riccò M, Perucchi A, Di Pietro P, Cavalleri A (2018) Pressure tuning of light-induced superconductivity in K3C60. Nat Phys 14:837–841. https://doi.org/10.1038/s41567-018-0134-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gunnarsson O (2000) C60 – the hole story. Nature 408:528–529. https://doi.org/10.1038/35046179

    Article  CAS  PubMed  Google Scholar 

  49. Many papers have already been retrieved from many scientific journals. An article related to the scientific misconduct can be found in https://link.springer.com/article/10.1023/A:1023402605160

  50. Snider N, Dasenbrock-Gammon R, McBride M, Debessai H, Vindana K, Vencatasamy KV, Lawler A, Salamat RP (2020) Dias, room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586:373. https://doi.org/10.1038/s41586-020-2801-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Tanigaki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tanigaki, K. (2022). Superconductivity. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_42

Download citation

Publish with us

Policies and ethics