Skip to main content

Transition Metal Salt-Catalyzed Reactions of [60]Fullerene

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

Transition metal salt-catalyzed reactions of [60]fullerene have been one of the most powerful methods for the chemical modifications of [60]fullerene and have attracted extensive attention due to their high selectivities and excellent reaction efficiencies. Transition metal salts such as those of palladium, rhodium, copper, and others have been widely employed as catalysts for the synthesis of diversified [60]fullerene derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res 36:807–815

    Article  CAS  PubMed  Google Scholar 

  2. Guldi DM, Illescas BM, Atienza CM, Wielopolski M, Martín N (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597

    Article  CAS  PubMed  Google Scholar 

  3. Li C-Z, Yip H-L, Jen AK-Y (2012) Functional fullerenes for organic photovoltaics. J Mater Chem 22:4161–4177

    Article  CAS  Google Scholar 

  4. Zhu S-E, Li F, Wang G-W (2013) Mechanochemistry of fullerenes and related materials. Chem Soc Rev 42:7535–7570

    Article  CAS  PubMed  Google Scholar 

  5. Peng J, Xiang J-J, Wang H-J, Li F-B, Huang Y-S, Liu L, Liu C-Y, Asiri AM, Alamry KA (2017) DMAP-mediated synthesis of fulleropyrrolines: reaction of [60]fullerene with aromatic aldehydes and arylmethanamines in the absence or presence of manganese(III) acetate. J Org Chem 82:9751–9764

    Article  CAS  PubMed  Google Scholar 

  6. Zhang M, Wang H-J, Li F-B, Zhong X-X, Huang Y-S, Liu L, Liu C-Y, Asiri AM, Alamry KA (2018) Stereoselective synthesis of N-ethyl-2-arylvinyl-5-methyl fulleropyrrolidines: reaction of [60]fullerene with aromatic aldehydes and triethylamine/diethylamine in the absence or presence of manganese(III) acetate. Org Biomol Chem 16:2975–2985

    Article  CAS  PubMed  Google Scholar 

  7. Liu Q, Liu T-X, Ma N, Tu C, Wang R, Zhang G (2019) Cu(II)/Mn(III)-promoted synergistic radical A-heteroannulation reaction: synthesis of [60]fullerene-fused tetrahydroquinoline derivatives. J Org Chem 84:7255–7264

    Article  CAS  PubMed  Google Scholar 

  8. Liu T-X, Liu Y, Chao D, Zhang P, Liu Q, Shi L, Zhang Z, Zhang G (2014) Iron-mediated internal-oxidant relay cascade reaction: strategy to synthesize fullerenooxazoles and hydroxyfullerenyl amides. J Org Chem 79:11084–11090

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X-F, Li F-B, Wu J, Shi J-L, Liu Z, Liu L (2015) Synthesis of fullerene-fused dioxanes/dioxepanes: ferric perchlorate-mediated one-step reaction of [60]fullerene with diols. J Org Chem 80:6037–6043

    Article  CAS  PubMed  Google Scholar 

  10. Liu T-X, Zhang Z, Liu Q, Zhang P, Jia P, Zhang Z, Zhang G (2014) Synthesis of [60]fullerene-fused tetrahydroazepinones and azepinonimines via Cu(OAc)2-promoted N-heteroannulation reaction. Org Lett 16:1020–1023

    Article  CAS  PubMed  Google Scholar 

  11. Wu J, Liu C-X, Wang H-J, Li F-B, Shi J-L, Liu L, Li J-X, Liu C-Y, Huang Y-S (2016) Cu(OAc)2-mediated reaction of [60]fullerene with aldehydes and primary amines for the synthesis of fulleropyrrolines. J Org Chem 81:9296–9307

    Article  CAS  PubMed  Google Scholar 

  12. Yang H-T, Tan Y-C, Yang Y, Sun X-Q, Miao C-B (2016) Cu(OAc)2-mediated reaction of C60 with ureas for the preparation of fulleroimidazolidinones. J Org Chem 81:1157–1163

    Article  CAS  PubMed  Google Scholar 

  13. Shiu L-L, Lin T-I, Peng S-M, Her G-R, Ju DD, Lin S-K, Hwang J-H, Mou CY, Luh T-Y (1994) Palladium-catalysed [3 + 2] cycloaddition of trimethylenemethane (TMM) and fullerene. Observation of the room-temperature fluorescence spectrum of the TMM–C60 adduct. J Chem Soc Chem Commun:647–648

    Google Scholar 

  14. Shen CKF, Chien K-M, Liu T-Y, Lin T-I, Her G-R, Luh T-Y (1995) Palladium-catalyzed [3 + 2] cycioaddition of 60-fullerene with cis-HOCH2CH=CHCH2OCO2Et. Tetrahedron Lett 36:5383–5384

    CAS  Google Scholar 

  15. Mori S, Nambo M, Chi L-C, Bouffard J, Itami K (2008) A bench-stable Pd catalyst for the hydroarylation of fullerene with boronic acids. Org Lett 10:4609–4612

    Article  CAS  PubMed  Google Scholar 

  16. Nambo M, Itami K (2009) Palladium-catalyzed carbon–carbon bond formation and cleavage of organo(hydro)fullerenes. Chem Eur J 15:4760–4764

    Article  CAS  PubMed  Google Scholar 

  17. Nambo M, Wakamiya A, Yamaguchi S, Itami K (2009) Regioselective unsymmetrical tetraallylation of C60 through palladium catalysis. J Am Chem Soc 131:15112–15113

    Article  CAS  PubMed  Google Scholar 

  18. Nambo M, Wakamiya A, Itami K (2012) Palladium-catalyzed tetraallylation of C60 with allyl chloride and allylstannane: mechanism, regioselectivity, and enantioselectivity. Chem Sci 3:3474–3481

    Article  CAS  Google Scholar 

  19. Lu S, Jin T, Bao M, Asiri AM, Yamamoto Y (2012) Palladium-catalyzed bisfunctionalization of active alkenes by β-acetonitrile-α-allyl addition: application to the synthesis of unsymmetric 1,4-di(organo)fullerene derivatives. Tetrahedron Lett 52:1210–1213

    Article  Google Scholar 

  20. Liu Q, Liu T-X, Ru Y, Zhu X, Zhang G (2019) Palladium-catalyzed decarboxylative heterocyclizations of [60]fullerene: preparation of novel vinyl-substituted [60]fullerene-fused tetrahydrofurans/pyrans/quinolines. Chem Commun 55:14498–14501

    Article  CAS  Google Scholar 

  21. Weaver JD, Recio A, Grenning AJ, Tunge JA (2011) Transition metal-catalyzed decarboxylative allylation and benzylation reactions. Chem Rev 111:1846–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan A, Zhang YJ (2015) Palladium-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates with electrophiles: construction of quaternary stereocenters. Synlett 26:853–860

    Article  CAS  Google Scholar 

  23. Guo W, Gómez JE, Cristòfol À, Xie J, Kleij AW (2018) Catalytic transformations of functionalized cyclic organic carbonates. Angew Chem Int Ed 57:13735–13747

    Article  CAS  Google Scholar 

  24. Liu Q, Liu T-X, Ma J, Zhang G (2020) Palladium-catalyzed three-component tandem coupling-carboannulation reaction leading to polysubstituted [60]fullerene-fused cyclopentanes. Org Lett 22:284–289

    Article  PubMed  Google Scholar 

  25. Zhu B, Wang G-W (2009) Synthesis of [60]fulleroindolines: palladium-catalyzed heteroannulations of [60]fullerene with o-iodoanilines. J Org Chem 74:4426–4428

    Article  CAS  PubMed  Google Scholar 

  26. Emrich DE, Larock RC (2004) Palladium-catalyzed heteroannulation of cyclic alkenes by functionally substituted aryl iodides. J Org Chem 689:3756–3766

    Article  CAS  Google Scholar 

  27. Wan X, Ma Z, Li B, Zhang K, Cao S, Zhang S, Shi Z (2006) Highly selective C–H functionalization/halogenation of acetanilide. J Am Chem Soc 128:7416–7417

    Article  CAS  PubMed  Google Scholar 

  28. Zhu B, Wang G-W (2009) Palladium-catalyzed heteroannulation of [60]fullerene with anilides via C–H bond activation. Org Lett 11:4335–4337

    Article  Google Scholar 

  29. Yang S, Li B, Wan X, Shi Z (2007) Ortho arylation of acetanilides via Pd(II)-catalyzed C–H functionalization. J Am Chem Soc 129:6066–6067

    Article  CAS  PubMed  Google Scholar 

  30. Li B-J, Tian S-L, Fang Z, Shi Z-J (2008) Multiple C–H activations to construct biologically active molecules in a process completely free of organohalogen and organometallic components. Angew Chem Int Ed 47:1115–1118

    Article  CAS  Google Scholar 

  31. Chuang S-C, Rajeshkumar V, Cheng C-A, Deng J-C, Wang G-W (2011) Annulation of benzamides with [60]fullerene through palladium(II)-catalyzed C–H bond activation. J Org Chem 76:1599–1604

    Article  CAS  PubMed  Google Scholar 

  32. Rajeshkumar V, Chan F-W, Chuang S-C (2012) Palladium-catalyzed and hybrid acids-assisted synthesis of [60]fulleroazepines in one pot under mild conditions: annulation of N-sulfonyl-2-aminobiaryls with [60]fullerene through sequential C–H bond activation, C–C and C–N bond formation. Adv Synth Catal 354:2473–2483

    Google Scholar 

  33. Su Y-T, Wang Y-L, Wang G-W (2012) Palladium-catalysed heteroannulation of [60]fullerene with N-benzyl sulfonamides and subsequent functionalization. Chem Commun 48:8132–8134

    Article  CAS  Google Scholar 

  34. Su Y-T, Wang Y-L, Wang G-W (2014) Palladium-catalyzed heteroannulation of [60]fullerene with N-(2-arylethyl)sulfonamides via C–H bond activation. Org Chem Front 1:689–693

    Article  CAS  Google Scholar 

  35. Hussain M, Chen M, Yang S, Wang G-W (2019) Palladium-catalyzed heteroannulation of indole-1-carboxamides with [60]fullerene and subsequent electrochemical transformations. Org Lett 21:8568–8571

    Article  CAS  PubMed  Google Scholar 

  36. Li F, Liu T-X, Wang G-W (2012) Synthesis of [60]fullerene-fused sultones via sulfonic acid group-directed C–H bond activation. Org Lett 14:2176–2179

    Article  CAS  PubMed  Google Scholar 

  37. Zhai W-Q, Peng R-F, Jin B, Wang G-W (2014) Synthesis of [60]fullerene-fused tetrahydrobenzooxepine and isochroman derivatives via hydroxyl-directed C–H activation/C–O cyclization. Org Lett 16:1638–1641

    Article  CAS  PubMed  Google Scholar 

  38. Li F, Wang J-J, Wang G-W (2017) Palladium-catalyzed synthesis of [60]fullerene-fused benzofurans via heteroannulation of phenols. Chem Commun 53:1852–1855

    Article  CAS  Google Scholar 

  39. Hussain M, Niu C, Wang G-W (2020) Palladium-catalyzed synthesis of [60]fullerene-fused furochromenones and further electrochemical functionalization. Org Chem Front 7:1249–1254

    Article  CAS  Google Scholar 

  40. Zhou D-B, Wang G-W (2015) Palladium-catalyzed decarboxylative annulation of 2-arylbenzoic acids with [60]fullerene via C–H bond activation. Org Lett 17:1260–1263

    Article  CAS  PubMed  Google Scholar 

  41. Zhou D-B, Wang G-W (2016) Synthesis of [60]fullerene-fused spiroindanes by palladium-catalyzed oxidative annulation of [60]fullerene with 2-aryl cyclic 1,3-dicarbonyl compounds. Org Lett 18:2616–2619

    Article  CAS  PubMed  Google Scholar 

  42. Ma J, Liu T-X, Zhang P, Zhang C, Zhang G (2021) Palladium-catalyzed domino spirocyclization of [60]fullerene: synthesis of diverse [60]fullerene-fused spiro[4,5]/[5,5] derivatives. Chem Commun 57:49–52

    Article  CAS  Google Scholar 

  43. Yan Y-T, Gao W, Jin B, Shan D-S, Peng R-F, Chu S-J (2018) Palladium-catalyzed reaction of [60]fullerene with aroyl compounds via enolate-mediated sp2 C–H bond activation and hydroxylation. J Org Chem 83:672–683

    Article  CAS  PubMed  Google Scholar 

  44. Zheng T, Shan D-S, Jin B, Peng R-F (2018) Synthesis and self-sensitized photooxidation of 2-fulleropyrrolines by palladium(II)-catalyzed heteroannulation of [60]fullerene with benzoyl hydrazone esters. Org Biomol Chem 16:8845–8853

    Article  CAS  PubMed  Google Scholar 

  45. Becker L, Evans TP, Bada JL (1993) Synthesis of C60H2 by rhodium-catalyzed hydrogenation of C60. J Org Chem 58:7630–7631

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez R, Knight BW, Wudl F, Semones MA, Padwa A (1994) The reversible cycloaddition of isomiunchnones to C60. J Org Chem 59:7949–7951

    Article  CAS  Google Scholar 

  47. Nair V, Sethumadhavan D, Sheela KC, Eigendorf GK (1999) Cycloaddition reactions of carbonyl ylides to [60]fullerene: synthesis of novel C60 derivatives. Tetrahedron Lett 40:5087–5090

    Article  CAS  Google Scholar 

  48. Nair V, Sethumadhavan D, Sheela KC, Nair SM, Eigendorf GK (2002) Dipolar cycloaddition of carbonyl ylides with [60]fullerene: formation of novel heterocycle fused fullerene derivatives. Tetrahedron 58:3009–3013

    Article  CAS  Google Scholar 

  49. Duczek W, Radeck W, Niclas H-J, Ramm M, Costisella B (1997) Diels-alder cycloaddition of substituted norcaradienes with [60]fullerene. Tetrahedron Lett 38:6651–6654

    Article  CAS  Google Scholar 

  50. Pellicciari R, Annibali D, Costantino G, Marinozzi M, Natalini B (1997) Dirhodium tetraacetate-mediated decomposition of ethydiazoacetate and ethyldiazo-malonate in the presence of fullerene. A new procedure for the selective synthesis of [6-6]-closed methanofullerenes. Synlett 10:1196–1198

    Article  Google Scholar 

  51. Muraoka T, Asaji H, Yamamoto Y, Matsuda I, Itoh K (2000) Rhodium-catalyzed silylative carbocyclization on C60. Chem Commun:199–200

    Google Scholar 

  52. Artigas A, Pla-Quintana A, Lledó A, Roglans A, Solà M (2018) Expeditious preparation of open-cage fullerenes by rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition of diynes and C60: an experimental and theoretical study. Chem Eur J 24:10653–10661

    Article  CAS  PubMed  Google Scholar 

  53. Nambo M, Noyori R, Itami K (2007) Rh-catalyzed arylation and alkenylation of C60 using organoboron compounds. J Am Chem Soc 129:8080–8081

    Article  CAS  PubMed  Google Scholar 

  54. Nambo M, Segawa Y, Wakamiya A, Itami K (2011) Selective introduction of organic groups to C60 and C70 using organoboron compounds and rhodium catalyst: a new synthetic approach to organo(hydro)fullerenes. Chem Asian J 6:590–598

    Article  CAS  PubMed  Google Scholar 

  55. Matsumoto F, Iwai T, Moriwaki K, Takao Y, Ito T, Mizuno T, Ohno T (2012) Design of fullerene derivatives for stabilizing LUMO energy using donor groups placed in spatial proximity to the C60 cage. J Org Chem 77:9038–9043

    Article  CAS  PubMed  Google Scholar 

  56. Li F-B, Liu T-X, Wang G-W (2008) Synthesis of fullerooxazoles: novel reactions of [60]fullerene with nitriles promoted by ferric perchlorate. J Org Chem 73:6417–6420

    Article  CAS  PubMed  Google Scholar 

  57. He C-L, Liu R, Li D-D, Zhu S-E, Wang G-W (2013) Synthesis and functionalization of [60]fullerene-fused imidazolines. Org Lett 15:1532–1535

    Article  CAS  PubMed  Google Scholar 

  58. Hou H-L, Gao X (2012) Aerobic oxidations of C602− in the presence of PhCN and PhCH2CN: oxygenation versus dehydrogenation reactions. J Org Chem 77:2553–2558

    Article  CAS  PubMed  Google Scholar 

  59. Yang H-T, Liang X-C, Wang Y-H, Yang Y, Sun X-Q, Miao C-B (2013) CuI-catalyzed oxidative [3 + 2] reaction of fullerene with amidines or amides using air as the oxidant: preparation of fulleroimidazole or fullerooxazole derivatives. Org Lett 15:4650–4653

    Article  CAS  PubMed  Google Scholar 

  60. Cheung CW, Buchwald SL (2012) Room temperature copper(II)-catalyzed oxidative cyclization of enamides to 2,5-disubstituted oxazoles via vinylic C–H functionalization. J Org Chem 77:7526–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li J, Neuville L (2013) Copper-catalyzed oxidative diamination of terminal alkynes by amidines: synthesis of 1,2,4-trisubstituted imidazoles. Org Lett 15:1752–1755

    Article  CAS  PubMed  Google Scholar 

  62. Wang G-W, Yang H-T, Miao C-B, Xu Y, Liu F (2006) Radical reactions of [60]fullerene with β-enamino carbonyl compounds mediated by manganese(III) acetate. Org Biomol Chem 4:2595–2599

    Article  CAS  PubMed  Google Scholar 

  63. Yang H-T, Liang X-C, Wang Y-H, Yang Y, Sun X-Q, Miao C-B (2013) CuCl2-mediated reaction of [60]fullerene with amines in the presence or absence of dimethyl acetylenedicarboxylate: preparation of fulleropyrroline or aziridinofullerene derivatives. J Org Chem 78:11992–11998

    Article  CAS  PubMed  Google Scholar 

  64. Jiang S-P, Su Y-T, Liu K-Q, Wu Q-H, Wang G-W (2015) Copper(I)-catalyzed heteroannulation of [60]fullerene with ketoxime acetates: preparation of novel 1-fulleropyrrolines. Chem Commun 51:6548–6551

    Article  CAS  Google Scholar 

  65. Huang H, Ji X, Wu W, Jiang H (2015) Transition metal-catalyzed C–H functionalization of N-oxyenamine internal oxidants. Chem Soc Rev 44:1155–1171

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Hu Y, Zhang D, Liu Q, Dong Y, Liu H (2017) Transition metal-catalyzed reactions involving oximes. Adv Synth Catal 359:710–771

    Article  CAS  Google Scholar 

  67. Liu T-X, Hua S, Ma N, Zhang P, Bi J, Zhang Z, Zhang G (2018) Reactivity and synthetic applications of α-functionalized oxime acetates: divergent access to fulleropyrrolidines and mono- and disubstituted 1-fulleropyrrolines via copper-catalyzed redox-neutral N-heteroannulation with [60]fullerene. Adv Synth Catal 360:142–152

    Article  CAS  Google Scholar 

  68. Anderson S, Taylor PN, Verschoor GLB (2004) Benzofuran trimers for organic electroluminescence. Chem Eur J 10:518–527

    Article  CAS  PubMed  Google Scholar 

  69. Xia S, Liu T-X, Zhang P, Ma J, Liu Q, Ma N, Zhang Z, Zhang G (2018) Broad synthesis of disubstituted dihydrofuran-fused [60]fullerene derivatives via Cu(I)/Ag(I)-mediated synergistic annulation reaction. J Org Chem 83:862–870

    Article  CAS  PubMed  Google Scholar 

  70. Murata Y, Kato N, Fujiwara K, Komatsu K (1999) Solid-state [4 + 2] cycloaddition of fullerene C60 with condensed aromatics using a high-speed vibration milling technique. J Org Chem 64:3483–3488

    Article  CAS  PubMed  Google Scholar 

  71. Yang H-T, Ren L-W, Miao C-B, Dong C-P, Yang Y, Xi H-T, Meng Q, Jiang Y, Sun X-Q (2013) DMAP-catalyzed [3 + 2] and [4 + 2] cycloaddition reactions between [60]fullerene and unmodified Morita-Baylis-Hillman adducts in the presence of Ac2O. J Org Chem 78:1163–1170

    Article  CAS  PubMed  Google Scholar 

  72. Jiang S-P, Lu W-Q, Liu Z, Wang G-W (2018) Synthesis of fullerotetrahydroquinolines via [4 + 2] cycloaddition reaction of [60]fullerene with in situ generated aza-o-quinone methides. J Org Chem 83:1959–1968

    Article  CAS  PubMed  Google Scholar 

  73. Wang G-W, Li J-X, Li Y-J, Liu Y-C (2006) Novel reactions of [60]fullerene with amino acid esters and carbon disulfide. J Org Chem 71:680–684

    Article  CAS  PubMed  Google Scholar 

  74. Li J-X, Wang G-W (2012) Synthesis of [60]fullerene-fused thiolactams and thiaimidates. Tetrahedron Lett 53:1610–1612

    Article  CAS  Google Scholar 

  75. Wu S-L, Gao X (2018) Copper-catalyzed aerobic oxidative reaction of C60 with aliphatic primary amines and CS2. J Org Chem 83:2125–2130

    Article  CAS  PubMed  Google Scholar 

  76. Jiang S-P, Wu Q-H, Wang G-W (2017) Copper-promoted synthesis of 2-fulleropyrrolines via heteroannulation of [60]fullerene with α-amino ketones. J Org Chem 82:10823–10829

    Article  CAS  PubMed  Google Scholar 

  77. Yang H-T, Ge J, Lu X-W, Sun X-Q Miao C-B (2017) Copper-catalyzed functionalizations of C60 with amino alcohols. J Org Chem 82:5873–5880

    Google Scholar 

  78. Jiang S-P, Liu Z, Lu W-Q, Wang G-W (2018) Synthesis of fullerotetrahydropyridazines via the copper-catalyzed heteroannulation of [60]fullerene with hydrazides. Org Chem Front 5:1188–1193

    Google Scholar 

  79. Xiao Z, Matsuo Y, Nakamura E (2010) Copper-catalyzed formal [4 + 2] annulation between alkyne and fullerene bromide. J Am Chem Soc 132:12234–12236

    Article  CAS  PubMed  Google Scholar 

  80. Birkett PR, Taylor R, Wachter NK, Carano M, Paolucci F, Roffia S, Zerbetto F (2000) The electrochemistry of C60Ph5Cl: a very special fullerene derivative. J Am Chem Soc 122:4209–4212

    Google Scholar 

  81. Clavaguera S, Khan SI, Rubin Y (2009) Unexpected de-arylation of a pentaaryl fullerene. Org Lett 11:1389–1391

    Article  CAS  PubMed  Google Scholar 

  82. Isobe H, Tanaka T, Nakanishi W, Lemiègre L, Nakamura E (2005) Regioselective oxygenative tetraamination of [60]fullerene. Fullerene-mediated reduction of molecular oxygen by amine via ground state single electron transfer in dimethyl sulfoxide. J Org Chem 70:4826–4832

    Article  CAS  PubMed  Google Scholar 

  83. Segura JL, Martín N (2000) [60]Fullerene dimers. Chem Soc Rev 29:13–25

    Article  CAS  Google Scholar 

  84. Luo H, Araki Y, Fujitsuka M, Ito O, Cheng F, Murata Y, Komatsu K (2004) Dissociative electron attachment of singly bonded [60]fullerene dimer studied by laser flash photolysis. J Phys Chem B 108:11915–11920

    Google Scholar 

  85. Zhang Y, Matsuo Y, Li C-Z, Tanaka H, Nakamura E (2011) A scalable synthesis of methano[60]fullerene and congeners by the oxidative cyclopropanation reaction of silylmethylfullerene. J Am Chem Soc 133:8086–8089

    Google Scholar 

  86. Cheng F, Murata Y, Komatsu K (2002) Synthesis, X-ray structure, and properties of the singly bonded C60 dimer having diethoxyphosphorylmethyl groups utilizing the chemistry of C602−. Org Lett 4:2541–2544

    Article  CAS  PubMed  Google Scholar 

  87. Lu S, Jin T, Kwon E, Bao M, Yamamoto Y (2012) Highly efficient Cu(OAc)2-catalyzed dimerization of monofunctionalized hydrofullerenes leading to singlebonded [60]fullerene dimers. Angew Chem Int Ed 51:802–806

    Article  CAS  Google Scholar 

  88. Zhang Y, Matsuo Y, Nakamura E (2011) Regiocontrolled synthesis of 1,2-di(organo)fullerenes via copper-assisted 1,4-aryl migration from silicon to carbon. Org Lett 13:6058–6061

    Article  CAS  PubMed  Google Scholar 

  89. Li C-Z, Matsuo Y, Niinomi T, Sato Y, Nakamura E (2010) Face-to-face C6F5–[60]fullerene interaction for ordering fullerene molecules and application to thin-film organic photovoltaics. Chem Commun 46:8582–8584

    Article  CAS  Google Scholar 

  90. Si W, Lu S, Bao M, Asao N, Yamamoto Y, Jin T (2014) Cu-catalyzed C–H amination of hydrofullerenes leading to 1,4-difunctionalized fullerenes. Org Lett 16:620–623

    Article  CAS  PubMed  Google Scholar 

  91. Hsiao T-Y, Santhosh KC, Liou K-F, Cheng C-H (1998) Nickel-promoted first enediyne cycloaddition reaction on C60: synthesis and photochemistry of the fullerene derivatives. J Am Chem Soc 120:12232–12236

    Article  CAS  Google Scholar 

  92. Si W, Zhang X, Asao N, Yamamoto Y, Jin T (2015) Ni-catalyzed direct 1,4-difunctionalization of [60]fullerene with benzyl bromides. Chem Commun 51:6392–6394

    Article  CAS  Google Scholar 

  93. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002) Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4and C70(OOtBu)10. J Am Chem Soc 124:13384–13385

    Google Scholar 

  94. Filippone S, Maroto EE, Martín-Domenech Á, Suarez M, Martín N (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582

    Article  CAS  PubMed  Google Scholar 

  95. Chao D, Liu T-X, Ma N, Zhang P, Fu Z, Ma J, Liu Q, Zhang F, Zhang Z, Zhang G (2016) Silver(I)-mediated three-component annulation reaction of [60]fullerene, sulfonylhydrazones, and nitriles: leading to diverse disubstituted [60]fullerene-fused dihydropyrroles. Chem Commun 52:982–985

    Article  CAS  Google Scholar 

  96. Lu S, Jin T, Bao M, Yamamoto Y (2011) Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: selective synthesis of monoalkylated fullerenes. J Am Chem Soc 133:12842–12848

    Article  CAS  PubMed  Google Scholar 

  97. Lu S, Si W, Bao M, Yamamoto Y, Jin T (2013) Co-catalyzed radical cycloaddition of [60]fullerene with active dibromides: selective synthesis of carbocycle-fused fullerene monoadducts. Org Lett 15:4030–4033

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Wu Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, QS., Lu, WQ., Wang, GW. (2022). Transition Metal Salt-Catalyzed Reactions of [60]Fullerene. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_35

Download citation

Publish with us

Policies and ethics