Skip to main content

Chemical Reactivity and Addition Pattern on C60 and C70

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 396 Accesses

Abstract

Fullerenes are a class of three-dimensional all-carbon hollow molecules incorporating conjugated π systems. The important principle to determine the stability of fullerene cages is the isolated pentagon rule (IPR). The chemical reactivity of fullerenes is similar to that of a fairly localized, electron-deficient polyolefin. Chemical modification of fullerenes is generally classified into exohedral modification and skeletal modification. Exohedral modification affords fullerene derivatives with one or several addends covalently linked to the spherical carbon framework. The main reactions are cycloadditions, radical additions, and nucleophilic additions. Skeletal modification produces open-cage fullerenes or heterofullerenes. Open-cage fullerenes usually refer to fullerene derivatives with more than one σ-bond scission and significantly disturbed π system. Heterofullerenes are those in which one or more carbons are replaced by other non-carbon atoms such as nitrogen. The addition pattern of exohedral modification on fullerenes is generally divided into monoaddition and multiaddition. In the case of monoaddition, C60 has only two possible isomers, including 1,2- and 1,4-additions, but for C70, there are eight possible isomers, including the predominant 1,2- and 5,6-additions. As for multiaddition, low regioselectivity is generally observed and complex regioisomers are easily formed. Fullerene derivatives have displayed promising applications in many fields including material science, biological medicine, and nanotechnology due to their outstanding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    Article  CAS  Google Scholar 

  2. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  3. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  4. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Crystal structure and bonding of ordered carbon cluster C60. Nature 353:147–149

    Article  CAS  Google Scholar 

  5. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97:3379–3383

    Article  CAS  Google Scholar 

  6. Semenov KN, Charykov NA, Keskinov VA, Piartman AK, Blokhin AA, Kopyrin AA (2010) Solubility of light fullerenes in organic solvents. J Chem Eng Data 55:13–36

    Article  CAS  Google Scholar 

  7. Yurovskaya MA, Trushkov IV (2002) Cycloaddition to buckminsterfullerene C60: advancements and future prospects. Russ Chem Bull Int Ed 51:367–443

    Article  CAS  Google Scholar 

  8. Bingel C (1993) Cyclopropanation of fullerenes. Chem Ber 126:1957–1959

    Article  CAS  Google Scholar 

  9. Osterodt J, Vogtle F (1996) C61Br2: a new synthesis of dibromomethanofullerene and mass spectrometric evidence of the carbon allotropes C121 and C122. Chem Commun:547–548

    Google Scholar 

  10. Ohno T, Martin N, Knight B, Wudl F, Suzuki T, Yu H (1996) Quinone-type methanofullerene acceptors: precursors for organic metals. J Org Chem 61:1306–1309

    Article  CAS  Google Scholar 

  11. Li H, Risko C, Seo JH, Campbell C, Wu G, Brédas J-L, Bazan GC (2011) Fullerene_carbene Lewis acid-base adducts. J Am Chem Soc 133:12410–12413

    Google Scholar 

  12. Banks MR, Cadogan JIG, Gosney I, Hodgson PKG, Langrige-Smith PRR, Millar JRA, Taylor AT (1995) Aziridino[2′,3′:1,2][60]fullerene. J Chem Soc Chem Commun:885–886

    Google Scholar 

  13. Heymann D, Weisman RB (2006) Fullerene oxides and ozonides. C R Chimie 9:1107–1116

    Article  CAS  Google Scholar 

  14. Prato M, Li QC, Wudl F, Lucchini V (1993) Addition of azides to C60: synthesis of azafulleroids. J Am Chem Soc 115:1148–1150

    Article  CAS  Google Scholar 

  15. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc 115:9798–9799

    Article  CAS  Google Scholar 

  16. Shi J-L, Zhang X-F, Wang H-J, Li F-B, Zhong X-X, Liu C-X, Liu L, Liu C-Y, Qin H-M, Huang Y-S (2016) A protocol for the preparation of 2,5-diaryl fulleropyrrolidines: thermal reaction of [60]fullerene with aromatic aldehydes and arylmethanamines. J Org Chem 81:7662–7674

    Article  CAS  PubMed  Google Scholar 

  17. Tzirakis MD, Orfanopoulos M (2013) Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem Rev 113:5262–5321

    Article  CAS  PubMed  Google Scholar 

  18. Hirsch A (1995) Addition reactions of buckminsterfullerene (C60). Synthesis:895–913

    Google Scholar 

  19. Murata Y, Shiro M, Komatsu K (1997) Synthesis, X-ray structure, and properties of the first tetrakisadduct of fullerene C60 having a fulvene-type π-system on the spherical surface. J Am Chem Soc 119:8117–8118

    Article  CAS  Google Scholar 

  20. Kampe K, Egger N, Vogel M (1993) Diamino and tetraamino derivatives of buckminsterfullerene C60. Angew Chem Intl Ed 32:1174–1176

    Article  Google Scholar 

  21. Wang G-W, Li J-X (2006) Novel multicomponent reaction of [60]fullerene: the first example of 1,4-dipolar cycloaddition reaction in fullerene chemistry. Org Biomol Chem 4:4063–4064

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Swager TM (2007) Functionalization of single-walled carbon nanotubes and fullerenes via a dimethyl acetylenedicarboxylate-4-dimethylaminopyridine zwitterion approach. J Am Chem Soc 129:7714–7715

    Article  CAS  PubMed  Google Scholar 

  23. Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387:583–586

    Article  CAS  Google Scholar 

  24. Zhang T-H, Lu P, Wang F, Wang G-W (2003) Reaction of [60]fullerene with free radicals generated from active methylene compounds by manganese(III) acetate dihydrate. Org Biomol Chem 1:4403–4407

    Article  CAS  PubMed  Google Scholar 

  25. Li F-B, Liu T-X, Wang G-W (2008) Synthesis of fullerooxazoles: novel reactions of [60]fullerene with nitriles promoted by ferric perchlorate. J Org Chem 73:6417–6420

    Article  CAS  PubMed  Google Scholar 

  26. Ma W, Wang K, Huang C, Wang H-J, Li F-B, Sun R, Liu L, Liu C-Y, Asiri AM (2020) Stereoselective synthesis of amino-substituted cyclopentafullerenes promoted by magnesium perchlorate/ferric perchlorate. Org Biomol Chem 18:964–974

    Article  CAS  PubMed  Google Scholar 

  27. Shiu L-L, Lin T-I, Peng S-M, Her G-R, Ju DD, Lin S-K, Hwang J-H, Mou CY, Luh T-Y (1994) Palladium-catalysed [3+2] cycloaddition of trimethylenemethane (TMM) and fullerene. Observation of the room-temperature fluorescence spectrum of the TMM-CGO adduct. J Chem Soc Chem Commun:647–648

    Google Scholar 

  28. Shen CKF, Chien K-M, Liu T-Y, Lin T-I, Her G-R, Luh T-Y (1995) Palladium-catalyzed [3+2] cycloaddition of 60-fullerene with cis-HOCH2CH=CHCH2OCO2Et. Tetrahedron Lett 36:5383–5384

    CAS  Google Scholar 

  29. Hashiguchi M, Watanabe K, Matsuo Y (2011) Facile fullerene modification: FeCl3-mediated quantitative conversion of C60 to polyarylated fullerenes containing pentaaryl(chloro)[60]fullerenes. Org Biomol Chem 9:6417–6421

    Article  CAS  PubMed  Google Scholar 

  30. Hashiguchi M, Obata N, Maruyama M, Yeo KS, Ueno T, Ikebe T, Takahashi I, Matsuo Y (2012) FeCl3-mediated synthesis of fullerenyl esters as low-LUMO acceptors for organic photovoltaic devices. Org Lett 14:3276–3279

    Article  CAS  PubMed  Google Scholar 

  31. Hashiguchi M, Inad H, Matsuo Y (2013) Solution-phase synthesis of dumbbell-shaped C120 by FeCl3-mediated dimerization of C60. Carbon 61:418–422

    Article  CAS  Google Scholar 

  32. Su Y-T, Wang G-W (2013) FeCl3-mediated cyclization of [60]fullerene with N-benzhydryl sulfonamides under high-speed vibration milling conditions. Org Lett 15:3408–3411

    Article  CAS  PubMed  Google Scholar 

  33. Li Y-F, Wang K, Wang H-J, Li F-B, Sun R, Li J-X, Liu L, Liu C-Y, Asiri AM (2020) Facile access to amino-substituted cyclopentafullerenes: novel reaction of [60]fullerene with β-substituted propionaldehydes and secondary amines in the absence/presence of magnesium perchlorate. Org Biomol Chem 18:6866–6880

    Article  PubMed  Google Scholar 

  34. Liu X, Wang X-Y, Sun R, Huang M-R, Liu X-S, Wang H-J, Li F-B, Liu X-F, Liu L, Liu C-Y (2021) Fullerotetrahydroquinolines: TfOH/TsOH·H2O-mediated one-pot two-step synthesis and N-alkylation/acylation/carboamidation reaction. Adv Synth Catal 363:4399–4421

    Google Scholar 

  35. Wang H, Li F, Wang P, Sun R, Ma W, Chen M, Miao W, Liu D, Wang T (2020) Chlorinated fullerene dimers for interfacial engineering toward stable perovskite solar cells with 22.3% efficiency. Adv Energy Mater 10:2000615

    Article  CAS  Google Scholar 

  36. Filippone S, Maroto EE, Martín-Domenech Á, Suarez M, Martín N (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582

    Article  CAS  PubMed  Google Scholar 

  37. Marco-Martínez J, Marcos V, Reboredo S, Filippone S, Martín N (2013) Asymmetric organocatalysis in fullerenes chemistry: enantioselective phosphine-catalyzed cycloaddition of allenoates onto C60. Angew Chem Int Ed 52:5115–5119

    Article  Google Scholar 

  38. Giovane LM, Barco JW, Yadav T, Lafleur AL, Marr JA, Howard JB, Rotello VM (1993) Kinetic stability of the fullerene C60-cyclopentadiene Diels-Alder adduct. J Phys Chem 97:8560–8561

    Article  CAS  Google Scholar 

  39. Moonen NNP, Thilgen C, Echegoyen L, Diederich F (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C60 and C70 with amalgamated magnesium. Chem Commun:335–336

    Google Scholar 

  40. Martín N, Altable M, Filippone S, Martín-Domenech A, Martínez-Álvarez R, Suarez M, Plonska-Brzezinska ME, Lukoyanova O, Echegoyen L (2007) Highly efficient retro-cycloaddition reaction of isoxazolino[4,5:1,2][60]- and -[70]fullerenes. J Org Chem 72:3840–3846

    Article  PubMed  Google Scholar 

  41. Wang G-W (2021) Fullerene mechanochemistry: serendipitous discovery of dumb-bell-shaped C120 and beyond. Chin J Chem 39:1797–1803

    Article  CAS  Google Scholar 

  42. Taylor R (2001) Fluorinated fullerenes. Chem Eur J 7:4074–4083

    Article  CAS  PubMed  Google Scholar 

  43. Troyanov SI, Kemnitz E (2005) Synthesis and structures of fullerene bromides and chlorides. Eur J Org Chem:4951–4962

    Google Scholar 

  44. Troyanov SI, Kemnitz E (2012) Synthesis and structure of halogenated fullerenes. Curr Org Chem 16:1060–1078

    Article  CAS  Google Scholar 

  45. Troshin PA, Khakina EA, Peregudov AS, Konarev DV, Soulimenkov IV, Peregudova SM, Lyubovskaya RN (2010) [C60(CN)5]-: a remarkably stable [60]fullerene anion. Eur J Org Chem:3265–3268

    Google Scholar 

  46. Wei X-W, Darwish AD, Boltalina OV, Hitchcock PB, Street JM, Taylor R (2001) The remarkable stable emerald green C60F15[CBr(CO2Et)2]3: the first [60]fullerene that is also the first [18]trannulene. Angew Chem Intl Ed 40:2989–2992

    Article  CAS  Google Scholar 

  47. Haufler RE, Conceicao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S, Haley MM, O’Brien SC, Pan C, Xiao Z, Billups WE, Ciufolini MA, Hauge RH, Margrave JL, Wilson LJ, Curl RF, Smalley RE (1990) Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J Phys Chem 94:8634–8636

    Article  CAS  Google Scholar 

  48. Zhang G, Liu Y, Liang D, Gan L, Li Y (2010) Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8. Angew Chem Int Ed 49:5293–5295

    Article  CAS  Google Scholar 

  49. Matsuo Y, Nakamura E (2008) Selective multiaddition of organocopper reagents to fullerenes. Chem Rev 108:3016–3028

    Article  CAS  PubMed  Google Scholar 

  50. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002) Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc 124:13384–13385

    Article  CAS  PubMed  Google Scholar 

  51. Schick G, Kampeb K-D, Hirsch A (1995) Reaction of [60]fullerene with morpholine and piperidine: preferred 1,4-additions and fullerene dimer formation. J Chem Soc Chem Commun:2023–2024

    Google Scholar 

  52. Isobe H, Tomita N, Nakamura E (2000) One-step multiple addition of amine to [60]fullerene. Synthesis of tetra(amino)fullerene epoxide under photochemical aerobic conditions. Org Lett 2:3663–3665

    Article  CAS  PubMed  Google Scholar 

  53. Isaacs L, Haldimann RF, Diederich F (1994) Tether-directed remote functionalization of buckminsterfullerene: regiospecific hexaadduct formation. Angew Chem Int Ed 33:2339–2342

    Article  Google Scholar 

  54. Hummelen JC, Prato M, Wudl F (1995) There is a hole in my bucky. J Am Chem Soc 117:7003–7004

    Article  CAS  Google Scholar 

  55. Vostrowsky O, Hirsch A (2006) Heterofullerenes. Chem Rev 106:5191–5207

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa-Bao Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, FB. (2022). Chemical Reactivity and Addition Pattern on C60 and C70. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_32

Download citation

Publish with us

Policies and ethics