Skip to main content

Preparation, Extraction/Isolation from Soot, and Solubility of Fullerenes

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 385 Accesses

Abstract

The goal of this chapter is an overview of various methods used to prepare and extract fullerenes. With limits on cited references, this chapter cannot be a comprehensive review. We begin with a historical discussion surrounding their serendipitous discovery. Next, we introduce a variety of production methods, with each approach having its unique advantages and disadvantages. Regardless of the chosen synthesis, the generated soot represents a complex mixture of nanomaterials ranging from amorphous carbon to fullerenes to metallofullerenes, if metal is added to the plasma. During fullerene formation, the coproduction of structural isomers further complicates subsequent purification efforts. For this reason, the second half of this chapter describes efforts to simplify the complexity of soot extract based on some aspect of selectivity. Strategies to obtain specific types of fullerenes and metallofullerenes include soot extraction with selective solvents, solubility differences for fractional crystallization, electrochemical methods, and chemical derivatization to isolate otherwise unstable species. Further details describing the purification, characterization, and application development of fullerenes and metallofullerenes are located in other chapters. Herein, we primarily discuss key and seminal works – with a time line beginning with the birth of fullerene-containing soot, to the advent of new methods of synthesis, and concluding with strategies to selectively extract these carbon structures of wondrous molecular architectures that are fullerenes and endohedral metallofullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Kroto HW et al (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107(25):7779–7780

    Google Scholar 

  2. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    Google Scholar 

  3. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60 – a new form of carbon. Nature 347(6291):354–358

    Article  Google Scholar 

  4. Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81(7):3322–3330

    Article  CAS  Google Scholar 

  5. Kratschmer W, Fostiropoulos K, Huffman DR (1990) The infrared and ultraviolet-absorption spectra of laboratory-produced carbon dust – evidence for the presence of the C60 molecule. Chem Phys Lett 170(2–3):167–170

    Article  Google Scholar 

  6. Haufler RE, Conceicao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S et al (1990) Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J Phys Chem 94(24):8634–8636

    Article  CAS  Google Scholar 

  7. Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropoulos K et al (1990) Characterization of the soluble all-carbon molecules C60 and C70. J Phys Chem 94(24):8630–8633

    Article  CAS  Google Scholar 

  8. Chibante LPF, Thess A, Alford JM, Diener MD, Smalley RE (1993) Solar generation of the fullerenes. J Phys Chem 97(34):8696–8700

    Article  CAS  Google Scholar 

  9. Fields CL, Pitts JR, Hale MJ, Bingham C, Lewandowski A, King DE (1993) Formation of fullerenes in highly concentrated solar flux. J Phys Chem 97(34):8701–8702

    Article  CAS  Google Scholar 

  10. Flamant G, Robert JF, Marty S, Gineste JM, Giral J, Rivoire B et al (2004) Solar reactor scaling up: the fullerene synthesis case study. Energy 29(5–6):801–809

    Article  CAS  Google Scholar 

  11. Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352(6331):139–141

    Article  CAS  PubMed  Google Scholar 

  12. Richter H, Labrocca AJ, Grieco WJ, Taghizadeh K, Lafleur AL, Howard JB (1997) Generation of higher fullerenes in flames. J Phys Chem B 101(9):1556–1560

    Article  CAS  Google Scholar 

  13. Murayama H, Tomonoh S, Alford JM, Karpuk ME (2004) Fullerene production in tons and more: from science to industry. Fuller Nanotub Car N 12(1–2):1–9

    CAS  Google Scholar 

  14. Takehara H, Fujiwara M, Arikawa M, Diener MD, Alford JM (2005) Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 43(2):311–319

    Article  CAS  Google Scholar 

  15. Krokos E (2010) Plasma coupled radio frequency furnace: the synthesis, separation, and elucidation of the elusive Sc4C82 fullerene. J Phys Chem C 114(17):7626–7630

    Article  CAS  Google Scholar 

  16. Markovic Z, Todorovic-Markovic B, Mohai I, Farkas Z, Kovats E, Szepvolgyi J et al (2007) Comparative process analysis of fullerene production by the arc and the radio-frequency discharge methods. J Nanosci Nanotechnol 7(4–5):1357–1369

    Article  CAS  PubMed  Google Scholar 

  17. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M et al (1991) The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science 252(5005):548–551

    Article  CAS  PubMed  Google Scholar 

  18. Smart C, Eldridge B, Reuter W, Zimmerman JA, Creasy WR, Rivera N et al (1992) Extraction of giant fullerene molecules, and their subsequent solvation in low boiling-point solvents. Chem Phys Lett 188(3–4):171–176

    Article  CAS  Google Scholar 

  19. Creasy WR, Zimmerman JA, Ruoff RS (1993) Fullerene molecular-weight distributions in graphite soot extractions measured by laser desorption Fourier-transform mass spectrometry. J Phys Chem 97(5):973–979

    Article  CAS  Google Scholar 

  20. Cai WT, Li FF, Bao LPA, Xie YP, Lu X (2016) Isolation and crystallographic characterization of La2C2@C-5(574)-C-102 and La2C2@C-2(816)-C-104: evidence for the top-down formation mechanism of fullerenes. J Am Chem Soc 138(20):6670–6675

    Article  CAS  PubMed  Google Scholar 

  21. Shinohara H, Sato H, Saito Y, Izuoka A, Sugawara T, Ito H et al (1992) Extraction and mass spectroscopic characterization of giant fullerenes up to C500. Rapid Commun Mass Sp 6(7):413–416

    Article  CAS  Google Scholar 

  22. Bandow S, Kitagawa H, Mitani T, Inokuchi H, Saito Y, Yamaguchi H et al (1992) Anaerobic sampling and characterization of lanthanofullerenes: extraction of LaC76 and other LaC2n. J Phys Chem 96(24):9609–9612

    Article  CAS  Google Scholar 

  23. Ding JQ, Yang SH (1996) Efficient N,N-dimethylformamide extraction of endohedral metallofullerenes for HPLC purification. Chem Mater 8(12):2824–2827

    Article  CAS  Google Scholar 

  24. Sun DY, Liu ZY, Guo XH, Xu WG, Liu SY (1997) High-yield extraction of endohedral rare-earth fullerenes. J Phys Chem B 101(20):3927–3930

    Article  CAS  Google Scholar 

  25. Sun BY, Feng L, Shi ZJ, Gu ZN (2002) Improved extraction of metallofullerenes with DMF at high temperature. Carbon 40(9):1591–1595

    Article  CAS  Google Scholar 

  26. Lian YF, Yang SF, Yang SH (2002) Revisiting the preparation of La@C-82 (I and II) and La-2@C-80: efficient production of the “minor” isomer La@C-82 (II). J Phys Chem B 106(12):3112–3117

    Article  CAS  Google Scholar 

  27. Sun BY, Li MX, Luo HX, Shi ZJ, Gu ZN (2002) Electrochemical properties of metallofullerenes and their anions. Electrochim Acta 47(21):3545–3549

    Article  CAS  Google Scholar 

  28. Lian YF, Shi ZJ, Zhou XH, Gu ZN (2004) Different extraction behaviors between divalent and trivalent endohedral metallofullerenes. Chem Mater 16(9):1704–1714

    Article  CAS  Google Scholar 

  29. Yeretzian C, Wiley JB, Holczer K, Su T, Nguyen S, Kaner RB et al (1993) Partial separation of fullerenes by gradient sublimation. J Phys Chem 97(39):10097–10101

    Article  CAS  Google Scholar 

  30. Angeli CD, Cai T, Duchamp JC, Reid JE, Singer ES, Gibson HW et al (2008) Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene. Chem Mater 20(15):4993–4997

    Article  CAS  Google Scholar 

  31. Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393(6686):668–671

    Article  CAS  Google Scholar 

  32. Sun BY, Gu ZN (2002) Solvent-dependent anion studies on enrichment of metallofullerene. Chem Lett 12:1164–1165

    Article  Google Scholar 

  33. Tsuchiya T, Wakahara T, Shirakura S, Maeda Y, Akasaka T, Kobayashi K et al (2004) Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem Mater 16(22):4343–4346

    Article  CAS  Google Scholar 

  34. Tsuchiya T, Wakahara T, Lian YF, Maeda Y, Akasaka T, Kato T et al (2006) Selective extraction and purification of endohedral metallofullerene from carbon soot. J Phys Chem B 110(45):22517–22520

    Article  CAS  PubMed  Google Scholar 

  35. Lu X, Li HJ, Sun BY, Shi ZJ, Gu ZN (2005) Selective reduction and extraction of Gd@C82 and Gd2@C80 from soot and the chemical reaction of their anions. Carbon 43(7):1546–1549

    Article  CAS  Google Scholar 

  36. Ceron MR, Li FF, Echegoyen L (2013) An efficient method to separate Sc3N@C80 Ih and D5h isomers and Sc3N@C78 by selective oxidation with acetylferrocenium Fe(COCH3C5H4)Cp +. Chem Eur J 19(23):7410–7415

    Article  CAS  PubMed  Google Scholar 

  37. Nikawa H, Kikuchi T, Wakahara T, Nakahodo T, Tsuchiya T, Rahman GMA et al (2005) Missing metallofullerene La@C74. J Am Chem Soc 127(27):9684–9685

    Article  CAS  PubMed  Google Scholar 

  38. Wakahara T, Nikawa H, Kikuchi T, Nakahodo T, Rahman GMA, Tsuchiya T et al (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128(44):14228–14229

    Article  CAS  PubMed  Google Scholar 

  39. Nikawa H, Yamada T, Cao BP, Mizorogi N, Slanina Z, Tsuchiya T et al (2009) Missing metallofullerene with C80 cage. J Am Chem Soc 131(31):10950–10954

    Article  CAS  PubMed  Google Scholar 

  40. Akasaka T, Lu X, Kuga H, Nikawa H, Mizorogi N, Slanina Z et al (2010) Dichlorophenyl derivatives of La@C3v(7)-C82: endohedral metal induced localization of pyramidalization and spin on a triple-hexagon junction. Angew Chem Int Edit 49(50):9715–9719

    Article  CAS  Google Scholar 

  41. Akasaka T, Lu X (2012) Structural and electronic properties of endohedral metallofullerenes. Chem Rec 12(2):256–269

    Article  CAS  PubMed  Google Scholar 

  42. Wang ZY, Nakanishi Y, Noda S, Niwa H, Zhang JY, Kitaura R et al (2013) Missing small-bandgap metallofullerenes: their isolation and electronic properties. Angew Chem Int Edit 52(45):11770–11774

    Article  CAS  Google Scholar 

  43. Yamada M, Akasaka T, Nagase S (2018) Salvaging reactive fullerenes from soot by exohedral derivatization. Angew Chem Int Edit 57(41):13394–13405

    Article  CAS  Google Scholar 

  44. Shoji Y, Tashiro K, Aida T (2004) Selective extraction of higher fullerenes using cyclic dimers of zinc porphyrins. J Am Chem Soc 126(21):6570–6571

    Article  CAS  PubMed  Google Scholar 

  45. Nakanishi Y, Omachi H, Matsuura S, Miyata Y, Kitaura R, Segawa Y et al (2014) Size-selective complexation and extraction of endohedral metallofullerenes with cycloparaphenylene. Angew Chem Int Edit 53(12):3102–3106

    Article  CAS  Google Scholar 

  46. Fuertes-Espinosa C, Gomez-Torres A, Morales-Martinez R, Rodriguez-Fortea A, Garcia-Simon C, Gandara F et al (2018) Purification of uranium-based endohedral metallofullerenes (EMFs) by selective supramolecular encapsulation and release. Angew Chem Int Edit 57(35):11294–11299

    Article  CAS  Google Scholar 

  47. Sarina EA, Mercado BQ, Franco JU, Thompson CJ, Easterling ML, Olmstead MM et al (2015) 2-Aminoethanol extraction as a method for purifying Sc3N@C-80 and for differentiating classes of endohedral fullerenes on the basis of reactivity. Chem Eur J 21(47):17035–17043

    Article  CAS  PubMed  Google Scholar 

  48. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C60 in a variety of solvents. J Phys Chem 97(13):3379–3383

    Article  CAS  Google Scholar 

  49. Zhou XH, Gu ZN, Wu YQ, Sun YL, Jin ZX, Xiong Y et al (1994) Separation of C60 and C70 fullerenes in gram quantities by fractional crystallization. Carbon 32(5):935–937

    Article  CAS  Google Scholar 

  50. Doome RJ, Fonseca A, Richter H, Nagy JB, Thiry PA, Lucas AA (1997) Purification of C60 by fractional crystallization. J Phys Chem Solids 58(11):1839–1843

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges funding from the National Science Foundation grant 1856461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Stevenson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stevenson, S. (2022). Preparation, Extraction/Isolation from Soot, and Solubility of Fullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_20

Download citation

Publish with us

Policies and ethics