Skip to main content

Role of Geolocation Prediction in Disaster Management

  • Living reference work entry
  • Latest version View entry history
  • First Online:
International Handbook of Disaster Research

Abstract

Once a disaster occurs, the common practice nowadays is that people check social media platforms, where the news usually breaks, to find out up-to-the-minute situational updates. In fact, news agencies do likewise, not only individuals. Among the important information that is needed during disaster events is geolocation information (e.g., where the disaster event has happened, where affected people are situated at that moment, etc.). Such information plays an essential role in disaster management for affected people and also for response authorities such as the Intergovernmental Organizations (IGOs) and Nongovernmental Organizations (NGOs). It helps affected people to share accurate updates on their status, their needs, and the emerging incidents, which enable a rapid response. Furthermore, the geolocation information allows response authorities to manage their response activities (e.g., routing rescue teams), and reduce the impact of disasters by planning future activities (e.g., evacuation). This chapter links stakeholders’ requirements with existing computational methods for geolocation inference and introduces the computational tasks that fulfill the stakeholders’ unmet needs. It also discusses the Location Mention Prediction (LMP) task due to its key role for tackling all geolocation tasks. Moreover, it discusses different categories of challenges associated with LMP subtasks, reviews the existing solutions for each and their drawbacks, and sheds light on a few future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Olimat, H., Thirunarayan, K., Shalin, V., & Sheth, A. (2018). Location name extraction from targeted text streams using gazetteer-based statistical language models. In Proceedings of the 27th international conference on computational linguistics, pp. 1986–1997.

    Google Scholar 

  • Apache. (2022). Apache opennlp. Online. Accessed 30 Mar 2022.

    Google Scholar 

  • Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. O’Reilly Media.

    Google Scholar 

  • Derczynski, L., Bontcheva, K., & Roberts, I. (2016). Broad Twitter corpus: A diverse named entity recognition resource. In Proceedings of the 26th international conference on computational linguistics: Technical papers, pp. 1169–1179.

    Google Scholar 

  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the Association for Computational Linguistics: Human language technologies, pp. 4171–4186.

    Google Scholar 

  • Dutt, R., Hiware, K., Ghosh, A., & Bhaskaran, R. (2018). SAVITR: A system for real-time location extraction from microblogs during emergencies. In Companion proceedings of the web conference 2018, pp. 1643–1649.

    Google Scholar 

  • Fernández-Martínez, N. The FGLOCTweet corpus: An english tweet-based corpus for fine-grained location-detection tasks. (2022) Research in Corpus Linguistics, vol. 10, no. 1, pp. 117–133

    Google Scholar 

  • Ferragina, P., & Scaiella, U. (2010). TAGME: On-the-fly annotation of short text fragments (by Wikipedia entities).

    Google Scholar 

  • Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into information extraction systems by Gibbs sampling. In Proceedings of the 43rd annual meeting of the Association for Computational Linguistics (ACL’05) (pp. 363–370), Association for Computational Linguistics.

    Google Scholar 

  • Five essentials for the first 72 hours of disaster response, 2017. [Online; accessed 30 March 2022]. Available: https://www.unocha.org/story/five-essentials-first-72-hoursdisaster-response.

  • Gelernter, J., & Balaji, S. (2013). An algorithm for local geoparsing of microtext. GeoInformatica, 17(4), 635–667.

    Article  Google Scholar 

  • Ghahremanlou, L., Sherchan, W., & Thom, J. A. (2015). Geotagging twitter messages in crisis management. The Computer Journal, 58(9), 1937–1954.

    Article  Google Scholar 

  • Grace, R., Kropczynski, J., & Tapia, A. (2018). Community coordination: Aligning social media use in community emergency management. In Proceedings of the 15th ISCRAM conference.

    Google Scholar 

  • Han, B., Yepes, A. J., MacKinlay, A., & Chen, Q. (2014). Identifying Twitter location mentions. In Proceedings of the Australasian language technology Association Workshop 2014, Melbourne, Australia, pp. 157–162.

    Google Scholar 

  • Hiltz, S. R., Hughes, A. L., Imran, M., Plotnick, L., Power, R., & Turoff, M. (2020). Exploring the usefulness and feasibility of software requirements for social media use in emergency management. International Journal of Disaster Risk Reduction, 42, 101367.

    Article  Google Scholar 

  • Hu, X., Al-Olimat, H. S., Kersten, J., Wiegmann, M., Klan, F., Sun, Y., & Fan, H. (2022). GazPNE annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules. International Journal of Geographical Information Science, 36(2), 310–337.

    Google Scholar 

  • Hu, X., Zhou, Z., Li, H., Hu, Y., Gu, F., Kersten, J., Fan, H., Klan, F. Location reference recognition from texts: A survey and comparison. (2022). arXiv preprint arXiv:2207.01683.

    Google Scholar 

  • Hu Y., and Wang, J. How Do People Describe Locations during a Natural Disaster: An Analysis of Tweets from Hurricane Harvey. (2020). Leibniz International Proceedings in Informatics, LIPIcs, vol. 177, issn: 18688969. doi: 10.4230/LIPIcs.GIScience.2021.I.6

    Google Scholar 

  • Hughes, A. L., & Palen, L. (2009). Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, 6(3), 248–260.

    Article  Google Scholar 

  • Innovative uses of social media in emergency management, application/pdf, [Online; accessed 30 March 2022]. Available: https://www.hsdl.org/c/abstract/?docid=805223.

  • Ji, Z., Sun, A., Cong, G., & Han, J. (2016). Joint recognition and linking of fine-grained locations from tweets. In Proceedings of the 25th international conference on world wide web (pp. 1271–1281). International World Wide Web Conferences Steering Committee.

    Google Scholar 

  • Karimzadeh, M. (2016). Performance evaluation measures for toponym resolution. In Proceedings of the 10th workshop on Geographic Information Retrieval, GIR ’16. Association for Computing Machinery.

    Google Scholar 

  • Khanal, S., Traskowsky, M., & Caragea, D. (2021). Identification of fine-grained location mentions in crisis tweets. In Proceedings of the Language Resources and Evaluation Conference, Marseille, France: European Language Resources Association, 2022, pp. 7164–7173.

    Google Scholar 

  • Khanal, S., & Caragea, D. (2021, November). Multi-task learning to enable location mention identification in the early hours of a crisis event. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4051-4056.

    Google Scholar 

  • Khanal, S., Traskowsky, M., and Caragea, D. Identification of fine-grained location mentions in crisis tweets. (2022) In Proceedings of the Language Resources and Evaluation Conference, Marseille, France: European Language Resources Association, pp. 7164–7173. [Online]. Available: https://aclanthology. org/2022.lrec-1.776

    Google Scholar 

  • Kordopatis-Zilos, G., Popescu, A., Papadopoulos, S., & Kompatsiaris, Y. (2016). Placing images with refined language models and similarity search with pca-reduced vgg features. In MediaEval.

    Google Scholar 

  • Kropczynski, J., Grace, R., Coche, J., Halse, S., Obeysekare, E., Montarnal, A., Benaben, F., & Tapia, A. (2018). Identifying actionable information on social media for emergency dispatch. In ISCRAM Asia Pacific 2018: Innovating for resilience – 1st international conference on information systems for crisis response and management Asia Pacific, Wellington, New Zealand, pp. 428–438.

    Google Scholar 

  • Kumar, A., & Singh, J. P. (2019). Location reference identification from tweets during emergencies: A deep learning approach. International Journal of Disaster Risk Reduction, 33, 365–375.

    Article  Google Scholar 

  • Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity recognition. In Proceedings of the 2016 conference of the North American chapter of the Association for Computational Linguistics: Human language technologies, pp. 260–270.

    Google Scholar 

  • Li, C., & Sun, A. (2014). Fine-grained location extraction from tweets with temporal awareness. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (pp. 43–52). ACM.

    Google Scholar 

  • Li, C., & Sun, A. (2017). Extracting fine-grained location with temporal awareness in tweets: A two-stage approach. Journal of the Association for Information Science and Technology, 68(7), 1652–1670.

    Article  Google Scholar 

  • Li, H., Wang, M., Baldwin, T., Tomko, M., & Vasardani, M. (2019). UniMelb at SemEval-2019 task 12: Multi-model combination for toponym resolution. In Proceedings of the 13th international workshop on semantic evaluation (pp. 1313–1318). Association for Computational Linguistics.

    Google Scholar 

  • Lingad, J., Karimi, S., & Yin, J. (2013). Location extraction from disaster-related microblogs. Association for Computing Machinery.

    Book  Google Scholar 

  • Liu, F., Rahimi, A., Salehi, B., Choi, M., Tan, P., & Duong, L. (2014). Automatic identification of expressions of locations in tweet messages using conditional random fields. In Proceedings of the Australasian language technology association workshop 2014, Melbourne, Australia, pp. 171–176.

    Google Scholar 

  • Malmasi, S., & Dras, M. (2016). Location mention detection in tweets and microblogs. In K. Hasida & A. Purwarianti (Eds.), Computational linguistics (pp. 123–134). Springer Singapore.

    Chapter  Google Scholar 

  • Mao, H., Thakur, G., Sparks, K., Sanyal, J., & Bhaduri, B. (2019). Mapping near-real-time power outages from social media. International Journal of Digital Earth, 12(11), 1285–1299.

    Article  Google Scholar 

  • Middleton, S. E., Middleton, L., & Modafferi, S. (2014). Real-time crisis mapping of natural disasters using social media. IEEE Intelligent Systems, 29(2), 9–17.

    Article  Google Scholar 

  • Middleton, S. E., Kordopatis-Zilos, G., Papadopoulos, S., & Kompatsiaris, Y. (2018). Location extraction from social media: Geoparsing, location disambiguation, and geotagging. ACM Transactions on Information Systems, 36(4), 1–27.

    Article  Google Scholar 

  • Molla, D., & Karimi, S. (2014). Overview of the 2014 alta shared task: Identifying expressions of locations in tweets. In Proceedings of the Australasian Language Technology Association workshop 2014, pp. 151–156.

    Google Scholar 

  • Nand, P., Perera, R., Sreekumar, A., & He, L. (2014). A multi-strategy approach for location mining in tweets: AUT NLP group entry for ALTA-2014 shared task. In Proceedings of the Australasian Language Technology Association workshop 2014, Melbourne, Australia, pp. 163–170.

    Google Scholar 

  • Nizzoli, L., Avvenuti, M., Tesconi, M., & Cresci, S. (2020). Geo-semantic-parsing: AI-powered geoparsing by traversing semantic knowledge graphs. Decision Support Systems, 136, 113346.

    Article  Google Scholar 

  • Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543.

    Google Scholar 

  • Phan, M. C., Sun, A., Tay, Y., Han, J., & Li, C. (2017). Neupl: Attention-based semantic matching and pair-linking for entity disambiguation. In Proceedings of the 2017 ACM on conference on information and knowledge management, pp. 1667–1676.

    Google Scholar 

  • Reuter, C. (2015). Crisis 2.0: Towards a systematization of social software use (IJISCRAM) (pp. 35–48). Springer Fachmedien Wiesbaden.

    Google Scholar 

  • Reuter, C., Hughes, A. L., & Kaufhold, M.-A. (2018). Social media in crisis management: An evaluation and analysis of crisis informatics research. International Journal of Human–Computer Interaction, 34(4), 280–294.

    Article  Google Scholar 

  • Ritter, A., Clark, S., Etzioni, O., et al. (2011). Named entity recognition in tweets: An experimental study. In Proceedings of the conference on empirical methods in natural language processing (pp. 1524–1534). Association for Computational Linguistics.

    Google Scholar 

  • Rizzo, G., Basave, A. E. C., Pereira, B., Varga, A., Rowe, M., Stankovic, M., Dadzie, A. (2015). Making sense of microposts (# microposts2015) named entity recognition and linking (neel) challenge. In #MSM (pp. 44–53).

    Google Scholar 

  • Roy, K. C., Hasan, S., & Mozumder, P. (2020). A multilabel classification approach to identify hurricane-induced infrastructure disruptions using social media data. Computer-Aided Civil and Infrastructure Engineering, 35(12), 1387–1402.

    Article  Google Scholar 

  • Suwaileh, R., Imran, M., Elsayed, T., & Sajjad, H. (2020). Are we ready for this disaster? towards location mention recognition from crisis tweets. In Proceedings of the 28th international conference on computational linguistics, pp. 6252–6263.

    Google Scholar 

  • Suwaileh, R., Elsayed, T., Imran, M., & Sajjad, H. (2022). When a disaster happens, we are ready: Location mention recognition from crisis tweets. International Journal of Disaster Risk Reduction, 103107.

    Google Scholar 

  • Suwaileh, R., Elsayed, T., & Imran, M. (2023). IDRISI-RE: A generalizable dataset with benchmarks for location mention recognition on disaster tweets. Information Processing & Management, 60(3), 103340.

    Google Scholar 

  • Tanenblatt, M., Coden, A., & Sominsky, I. (2010). The conceptmapper approach to named entity recognition. In Proceedings of the seventh international conference on language resources and evaluation (LREC’10).

    Google Scholar 

  • The ushahidi platform.

    Google Scholar 

  • Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the seventh conference on natural language learning at HLT-NAACL, pp. 142–147.

    Google Scholar 

  • Vieweg, S. E. (2012). Situational awareness in mass emergency: A behavioral and linguistic analysis of microblogged communications [Ph.D. thesis, University of Colorado at Boulder].

    Google Scholar 

  • Wallgrün, J. O., Karimzadeh, M., MacEachren, A. M., & Pezanowski, S. (2018). Geocorpora: Building a corpus to test and train microblog geoparsers. International Journal of Geographical Information Science, 32(1), 1–29.

    Article  Google Scholar 

  • Wang, M., & Gerber, M. S. (2015). Using twitter for next-place prediction, with an application to crime prediction. In 2015 IEEE symposium series on computational intelligence, pp. 941–948.

    Google Scholar 

  • Wang, J., & Hu, Y. (2019a). Are we there yet? evaluating state-of-the-art neural network based geoparsers using EUPEG as a benchmarking platform. In Proceedings of the 3rd ACM SIGSPATIAL international workshop on geospatial humanities, pp. 1–6.

    Google Scholar 

  • Wang, J., & Hu, Y. (2019b). Enhancing spatial and textual analysis with EUPEG: An extensible and unified platform for evaluating geoparsers. Transactions in GIS, 23(6), 1393–1419.

    Article  Google Scholar 

  • Wang, X., Ma, C., Zheng, H., Liu, C., Xie, P., Li, L., & Si, L. (2019). DM_NLP at SemEval-2018 task 12: A pipeline system for toponym resolution. In Proceedings of the 13th international workshop on semantic evaluation (pp. 917–923). Association for Computational Linguistics.

    Google Scholar 

  • Wang, J., Hu, Y., & Joseph, K. (2020). NeuroTPR: A neuro-net toponym recognition model for extracting locations from social media messages. Transactions in GIS, 24(3), 719–735.

    Article  Google Scholar 

  • Weber, I., Imran, M., Ofli, F., Mrad, F., Colville, J., Fathallah, M., Chaker, A., & Ahmed, W. S. (2021). Non-traditional data sources: Providing insights into sustainable development. Communications of the ACM, 64(4), 88–95.

    Article  Google Scholar 

  • Weissenbacher, D., Magge, A., O’Connor, K., Scotch, M., & Gonzalez-Hernandez, G. (2019). SemEval- 2019 task 12: Toponym resolution in scientific papers. In Proceedings of the 13th international workshop on semantic evaluation, pp. 907–916.

    Google Scholar 

  • Xu, C., Pei, J., Li, J., Li, C., Luo, X., & Ji, D. (2019). DLocRL: A deep learning pipeline for fine-grained location recognition and linking in tweets. In Proceedings of the World Wide Web conference, pp. 3391–3397.

    Google Scholar 

  • Yadav, V., Laparra, E., Wang, T.-T., Surdeanu, M., & Bethard, S. (2019). University of Arizona at SemEval-2019 task 12: Deep-affix named entity recognition of geolocation entities. In Proceedings of the 13th international workshop on semantic evaluation (pp. 1319–1323). Association for Computational Linguistics.

    Google Scholar 

  • Yamada, I., Asai, A., Shindo, H., Takeda, H., and Matsumoto, Y. (2020). LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6442–6454.

    Google Scholar 

  • Yin, J., Karimi, S., & Lingad, J. (2014). Pinpointing locational focus in microblogs. In Proceedings of the Australasian document computing symposium (p. 66). ACM.

    Google Scholar 

  • Zade, H., Shah, K., Rangarajan, V., Kshirsagar, P., Imran, M., & Starbird, K. (2018). From situational awareness to actionability: Towards improving the utility of social media data for crisis response. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW).

    Google Scholar 

  • Zhang, W., & Gelernter, J. (2014). Geocoding location expressions in Twitter messages: A preference learning method. Journal of Spatial Information Science, 2014(9), 37–70.

    Google Scholar 

  • Zheng, X., Han, J., & Sun, A. (2018). A survey of location prediction on Twitter. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1652–1671.

    Article  Google Scholar 

  • Ziemke, J. (2012). Crisis mapping: The construction of a new interdisciplinary field? Journal of Map & Geography Libraries, 8(2), 101–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem Suwaileh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suwaileh, R., Elsayed, T., Imran, M. (2023). Role of Geolocation Prediction in Disaster Management. In: Singh, A. (eds) International Handbook of Disaster Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-8800-3_176-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8800-3_176-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8800-3

  • Online ISBN: 978-981-16-8800-3

  • eBook Packages: Springer Reference Business and ManagementReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Role of Geolocation Prediction in Disaster Management
    Published:
    04 July 2023

    DOI: https://doi.org/10.1007/978-981-16-8800-3_176-2

  2. Original

    Role of Geolocation Prediction in Disaster Management
    Published:
    14 May 2023

    DOI: https://doi.org/10.1007/978-981-16-8800-3_176-1