Abstract
Once a disaster occurs, the common practice nowadays is that people check social media platforms, where the news usually breaks, to find out up-to-the-minute situational updates. In fact, news agencies do likewise, not only individuals. Among the important information that is needed during disaster events is geolocation information (e.g., where the disaster event has happened, where affected people are now, etc.). Such information plays an essential role in disaster management for affected people and also for response authorities such as the Intergovernmental Organizations (IGOs) and Nongovernmental Organizations (NGOs). It helps affected people to share accurate updates on their status, their needs, and the emerging incidents, which enable a rapid response. Furthermore, the geolocation information allows response authorities to manage their response activities (e.g., routing rescue teams), and reduce the impact of disasters by planning future activities (e.g., evacuation). This chapter links stakeholders’ requirements with existing computational methods for geolocation inference and introduces the computational tasks that fulfill stakeholders’ unmet needs. It also discusses the Location Mention Prediction (LMP) task due to its key role for tackling all geolocation tasks. Moreover, it discusses different categories of challenges associated with LMP subtasks, reviews the existing solutions for each and their drawbacks, and sheds light on a few future directions.
Similar content being viewed by others
References
Al-Olimat, H., Thirunarayan, K., Shalin, V., & Sheth, A. (2018). Location name extraction from targeted text streams using gazetteer-based statistical language models. In Proceedings of the 27th international conference on computational linguistics, pp. 1986–1997.
Apache. (2022). Apache opennlp. Online. Accessed 30 Mar 2022.
Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. O’Reilly Media.
Derczynski, L., Bontcheva, K., & Roberts, I. (2016). Broad Twitter corpus: A diverse named entity recognition resource. In Proceedings of the 26th international conference on computational linguistics: Technical papers, pp. 1169–1179.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the Association for Computational Linguistics: Human language technologies, pp. 4171–4186.
Dutt, R., Hiware, K., Ghosh, A., & Bhaskaran, R. (2018). SAVITR: A system for real-time location extraction from microblogs during emergencies. In Companion proceedings of the web conference 2018, pp. 1643–1649.
Ferragina, P., & Scaiella, U. (2010). TAGME: On-the-fly annotation of short text fragments (by Wikipedia entities).
Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into information extraction systems by Gibbs sampling. In Proceedings of the 43rd annual meeting of the Association for Computational Linguistics (ACL’05) (pp. 363–370), Association for Computational Linguistics.
Five essentials for the first 72 hours of disaster response, 2017. [Online; accessed 30 March 2022]. Available: https://www.unocha.org/story/five-essentials-first-72-hoursdisaster-response.
Gelernter, J., & Balaji, S. (2013). An algorithm for local geoparsing of microtext. GeoInformatica, 17(4), 635–667.
Ghahremanlou, L., Sherchan, W., & Thom, J. A. (2015). Geotagging twitter messages in crisis management. The Computer Journal, 58(9), 1937–1954.
Grace, R., Kropczynski, J., & Tapia, A. (2018). Community coordination: Aligning social media use in community emergency management. In Proceedings of the 15th ISCRAM conference.
Han, B., Yepes, A. J., MacKinlay, A., & Chen, Q. (2014). Identifying Twitter location mentions. In Proceedings of the Australasian language technology Association Workshop 2014, Melbourne, Australia, pp. 157–162.
Hiltz, S. R., Hughes, A. L., Imran, M., Plotnick, L., Power, R., & Turoff, M. (2020). Exploring the usefulness and feasibility of software requirements for social media use in emergency management. International Journal of Disaster Risk Reduction, 42, 101367.
Hu, X., Al-Olimat, H. S., Kersten, J., Wiegmann, M., Klan, F., Sun, Y., & Fan, H. (2022). GazPNE annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules. International Journal of Geographical Information Science, 36(2), 310–337.
Hughes, A. L., & Palen, L. (2009). Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management, 6(3), 248–260.
Innovative uses of social media in emergency management, application/pdf, [Online; accessed 30 March 2022]. Available: https://www.hsdl.org/c/abstract/?docid=805223.
Ji, Z., Sun, A., Cong, G., & Han, J. (2016). Joint recognition and linking of fine-grained locations from tweets. In Proceedings of the 25th international conference on world wide web (pp. 1271–1281). International World Wide Web Conferences Steering Committee.
Karimzadeh, M. (2016). Performance evaluation measures for toponym resolution. In Proceedings of the 10th workshop on Geographic Information Retrieval, GIR ’16. Association for Computing Machinery.
Kordopatis-Zilos, G., Popescu, A., Papadopoulos, S., & Kompatsiaris, Y. (2016). Placing images with refined language models and similarity search with pca-reduced vgg features. In MediaEval.
Kropczynski, J., Grace, R., Coche, J., Halse, S., Obeysekare, E., Montarnal, A., Benaben, F., & Tapia, A. (2018). Identifying actionable information on social media for emergency dispatch. In ISCRAM Asia Pacific 2018: Innovating for resilience – 1st international conference on information systems for crisis response and management Asia Pacific, Wellington, New Zealand, pp. 428–438.
Kumar, A., & Singh, J. P. (2019). Location reference identification from tweets during emergencies: A deep learning approach. International Journal of Disaster Risk Reduction, 33, 365–375.
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity recognition. In Proceedings of the 2016 conference of the North American chapter of the Association for Computational Linguistics: Human language technologies, pp. 260–270.
Li, C., & Sun, A. (2014). Fine-grained location extraction from tweets with temporal awareness. In Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval (pp. 43–52). ACM.
Li, C., & Sun, A. (2017). Extracting fine-grained location with temporal awareness in tweets: A two-stage approach. Journal of the Association for Information Science and Technology, 68(7), 1652–1670.
Li, H., Wang, M., Baldwin, T., Tomko, M., & Vasardani, M. (2019). UniMelb at SemEval-2019 task 12: Multi-model combination for toponym resolution. In Proceedings of the 13th international workshop on semantic evaluation (pp. 1313–1318). Association for Computational Linguistics.
Lingad, J., Karimi, S., & Yin, J. (2013). Location extraction from disaster-related microblogs. Association for Computing Machinery.
Liu, F., Rahimi, A., Salehi, B., Choi, M., Tan, P., & Duong, L. (2014). Automatic identification of expressions of locations in tweet messages using conditional random fields. In Proceedings of the Australasian language technology association workshop 2014, Melbourne, Australia, pp. 171–176.
Malmasi, S., & Dras, M. (2016). Location mention detection in tweets and microblogs. In K. Hasida & A. Purwarianti (Eds.), Computational linguistics (pp. 123–134). Springer Singapore.
Mao, H., Thakur, G., Sparks, K., Sanyal, J., & Bhaduri, B. (2019). Mapping near-real-time power outages from social media. International Journal of Digital Earth, 12(11), 1285–1299.
Middleton, S. E., Middleton, L., & Modafferi, S. (2014). Real-time crisis mapping of natural disasters using social media. IEEE Intelligent Systems, 29(2), 9–17.
Middleton, S. E., Kordopatis-Zilos, G., Papadopoulos, S., & Kompatsiaris, Y. (2018). Location extraction from social media: Geoparsing, location disambiguation, and geotagging. ACM Transactions on Information Systems, 36(4), 1–27.
Molla, D., & Karimi, S. (2014). Overview of the 2014 alta shared task: Identifying expressions of locations in tweets. In Proceedings of the Australasian Language Technology Association workshop 2014, pp. 151–156.
Nand, P., Perera, R., Sreekumar, A., & He, L. (2014). A multi-strategy approach for location mining in tweets: AUT NLP group entry for ALTA-2014 shared task. In Proceedings of the Australasian Language Technology Association workshop 2014, Melbourne, Australia, pp. 163–170.
Nizzoli, L., Avvenuti, M., Tesconi, M., & Cresci, S. (2020). Geo-semantic-parsing: AI-powered geoparsing by traversing semantic knowledge graphs. Decision Support Systems, 136, 113346.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–1543.
Phan, M. C., Sun, A., Tay, Y., Han, J., & Li, C. (2017). Neupl: Attention-based semantic matching and pair-linking for entity disambiguation. In Proceedings of the 2017 ACM on conference on information and knowledge management, pp. 1667–1676.
Reuter, C. (2015). Crisis 2.0: Towards a systematization of social software use (IJISCRAM) (pp. 35–48). Springer Fachmedien Wiesbaden.
Reuter, C., Hughes, A. L., & Kaufhold, M.-A. (2018). Social media in crisis management: An evaluation and analysis of crisis informatics research. International Journal of Human–Computer Interaction, 34(4), 280–294.
Ritter, A., Clark, S., Etzioni, O., et al. (2011). Named entity recognition in tweets: An experimental study. In Proceedings of the conference on empirical methods in natural language processing (pp. 1524–1534). Association for Computational Linguistics.
Rizzo, G., Basave, A. E. C., Pereira, B., Varga, A., Rowe, M., Stankovic, M., Dadzie, A. (2015). Making sense of microposts (# microposts2015) named entity recognition and linking (neel) challenge. In #MSM (pp. 44–53).
Roy, K. C., Hasan, S., & Mozumder, P. (2020). A multilabel classification approach to identify hurricane-induced infrastructure disruptions using social media data. Computer-Aided Civil and Infrastructure Engineering, 35(12), 1387–1402.
Suwaileh, R., Imran, M., Elsayed, T., & Sajjad, H. (2020). Are we ready for this disaster? towards location mention recognition from crisis tweets. In Proceedings of the 28th international conference on computational linguistics, pp. 6252–6263.
Suwaileh, R., Elsayed, T., Imran, M., & Sajjad, H. (2022). When a disaster happens, we are ready: Location mention recognition from crisis tweets. International Journal of Disaster Risk Reduction, 103107.
Tanenblatt, M., Coden, A., & Sominsky, I. (2010). The conceptmapper approach to named entity recognition. In Proceedings of the seventh international conference on language resources and evaluation (LREC’10).
The ushahidi platform.
Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the seventh conference on natural language learning at HLT-NAACL, pp. 142–147.
Vieweg, S. E. (2012). Situational awareness in mass emergency: A behavioral and linguistic analysis of microblogged communications [Ph.D. thesis, University of Colorado at Boulder].
Wallgrün, J. O., Karimzadeh, M., MacEachren, A. M., & Pezanowski, S. (2018). Geocorpora: Building a corpus to test and train microblog geoparsers. International Journal of Geographical Information Science, 32(1), 1–29.
Wang, M., & Gerber, M. S. (2015). Using twitter for next-place prediction, with an application to crime prediction. In 2015 IEEE symposium series on computational intelligence, pp. 941–948.
Wang, J., & Hu, Y. (2019a). Are we there yet? evaluating state-of-the-art neural network based geoparsers using EUPEG as a benchmarking platform. In Proceedings of the 3rd ACM SIGSPATIAL international workshop on geospatial humanities, pp. 1–6.
Wang, J., & Hu, Y. (2019b). Enhancing spatial and textual analysis with EUPEG: An extensible and unified platform for evaluating geoparsers. Transactions in GIS, 23(6), 1393–1419.
Wang, X., Ma, C., Zheng, H., Liu, C., Xie, P., Li, L., & Si, L. (2019). DM_NLP at SemEval-2018 task 12: A pipeline system for toponym resolution. In Proceedings of the 13th international workshop on semantic evaluation (pp. 917–923). Association for Computational Linguistics.
Wang, J., Hu, Y., & Joseph, K. (2020). NeuroTPR: A neuro-net toponym recognition model for extracting locations from social media messages. Transactions in GIS, 24(3), 719–735.
Weber, I., Imran, M., Ofli, F., Mrad, F., Colville, J., Fathallah, M., Chaker, A., & Ahmed, W. S. (2021). Non-traditional data sources: Providing insights into sustainable development. Communications of the ACM, 64(4), 88–95.
Weissenbacher, D., Magge, A., O’Connor, K., Scotch, M., & Gonzalez-Hernandez, G. (2019). SemEval- 2019 task 12: Toponym resolution in scientific papers. In Proceedings of the 13th international workshop on semantic evaluation, pp. 907–916.
Xu, C., Pei, J., Li, J., Li, C., Luo, X., & Ji, D. (2019). DLocRL: A deep learning pipeline for fine-grained location recognition and linking in tweets. In Proceedings of the World Wide Web conference, pp. 3391–3397.
Yadav, V., Laparra, E., Wang, T.-T., Surdeanu, M., & Bethard, S. (2019). University of Arizona at SemEval-2019 task 12: Deep-affix named entity recognition of geolocation entities. In Proceedings of the 13th international workshop on semantic evaluation (pp. 1319–1323). Association for Computational Linguistics.
Yin, J., Karimi, S., & Lingad, J. (2014). Pinpointing locational focus in microblogs. In Proceedings of the Australasian document computing symposium (p. 66). ACM.
Zade, H., Shah, K., Rangarajan, V., Kshirsagar, P., Imran, M., & Starbird, K. (2018). From situational awareness to actionability: Towards improving the utility of social media data for crisis response. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW).
Zhang, W., & Gelernter, J. (2014). Geocoding location expressions in Twitter messages: A preference learning method. Journal of Spatial Information Science, 2014(9), 37–70.
Zheng, X., Han, J., & Sun, A. (2018). A survey of location prediction on Twitter. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1652–1671.
Ziemke, J. (2012). Crisis mapping: The construction of a new interdisciplinary field? Journal of Map & Geography Libraries, 8(2), 101–117.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2023 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Suwaileh, R., Elsayed, T., Imran, M. (2023). Role of Geolocation Prediction in Disaster Management. In: Singh, A. (eds) International Handbook of Disaster Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-8800-3_176-1
Download citation
DOI: https://doi.org/10.1007/978-981-16-8800-3_176-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-8800-3
Online ISBN: 978-981-16-8800-3
eBook Packages: Springer Reference Business and ManagementReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences
Publish with us
Chapter history
-
Latest
Role of Geolocation Prediction in Disaster Management- Published:
- 04 July 2023
DOI: https://doi.org/10.1007/978-981-16-8800-3_176-2
-
Original
Role of Geolocation Prediction in Disaster Management- Published:
- 14 May 2023
DOI: https://doi.org/10.1007/978-981-16-8800-3_176-1