Abstract
The nanoscale version of cellulose, known as nanocellulose (NC), has emerged as a promising green material thanks to its distinct properties, including its renewability, biodegradability, ecologically benign nature, and abundant natural occurrence. Many of the beneficial qualities of cellulose are also present in NC, such as their low density, nontoxicity, biodegradability, thermal stability, mechanical properties, reinforcing capabilities, and tunable self-assembly in aqueous conditions. The surface of NC is one of their most interesting features since it may be altered in a wide variety of ways by adding functionalizing chemicals. Esterification, etherification, amidation, and urethanization (all hydrophobic decorations), phosphorylation, sulfonation, TEMPO-oxidation, and carboxymethylation (all hydrophilic surface modifications) are just some of the ways documented for surface functionalization of NC. It is possible to create NC/inorganic composite materials by functionalizing the NC surface with inorganic metal ions, complexes, or compounds. The catalytic transformation of organic molecules is one area where such inorganically modified NC finds use. An in-depth analysis of how cellulose nanocrystals (CNCs) can be inorganically functionalized for use in catalysis has been done. Using CNCs to facilitate the catalytic transformation of organic compounds through oxidation, reduction, coupling, and electrocatalytic reactions has environmental benefits.
Similar content being viewed by others
References
D. Abol-Fotouh, M.A. Hassan, H. Shokry, A. Roig, M.S. Azab, A.E.-H.B. Kashyout, Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 10, 3491 (2020). https://doi.org/10.1038/s41598-020-60315-9
X. An, Y. Long, Y. Ni, Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydr. Polym. 156, 253–258 (2017). https://doi.org/10.1016/j.carbpol.2016.08.099
T.S. Anirudhan, S.R. Rejeena, Photocatalytic degradation of eosin yellow using poly(pyrrole-co-aniline)-coated TiO 2/nanocellulose composite under solar light irradiation. J. Mater. 2015, 1–11 (2015). https://doi.org/10.1155/2015/636409
A. Anise, A. Badieia, G. M. Ziaranib, A. Habibi-Yangjeh, M. J. Muñoz-Batistad, R. Luquee, Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production. Mol. Catal. 488, 110902 (2020). https://doi.org/10.1016/j.mcat.2020.110902
S. Ariaeenejad, E. Motamedi, G. Salekdeh, Immobilization of enzyme cocktails on dopamine functionalized magnetic cellulose nanocrystals to enhance sugar bioconversion: A biomass reusing loop. Carbohydr. Polym. 256, 117511 (2021). https://doi.org/10.1016/j.carbpol.2020.117511
P. Chauhan, N. Yan, Nanocrystalline cellulose grafted phthalocyanine: A heterogeneous catalyst for selective aerobic oxidation of alcohols and alkyl arenes at room temperature in a green solvent. RSC Adv. 5, 37517–37520 (2015). https://doi.org/10.1039/C4RA16869K
L. Chen, W. Cao, P.J. Quinlan, R.M. Berry, K.C. Tam, Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. ACS Sustain. Chem. Eng. 3, 978–985 (2015). https://doi.org/10.1021/acssuschemeng.5b00110
L. Chen, J.Y. Zhu, C. Baez, P. Kitin, T. Elder, Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835–3843 (2016). https://doi.org/10.1039/C6GC00687F
M. Chetia, A.A. Ali, A. Bordoloi, D. Sarma, Facile route for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazole using copper nanoparticles supported on nanocellulose as recyclable heterogeneous catalyst. J. Chem. Sci. 129, 1211–1217 (2017). https://doi.org/10.1007/s12039-017-1318-y
C.M. Cirtiu, A.F. Dunlop-Brière, A. Moores, Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: Application for catalytichydrogenation and Heck coupling under mild conditions. Green Chem. 13, 288–291 (2011). https://doi.org/10.1039/C0GC00326C
A. De Nino, M.A. Tallarida, V. Algieri, F. Olivito, P. Costanzo, G. De Filpo, L. Maiuolo, Sulfonated cellulose-based magnetic composite as useful media for water remediation from amine pollutants. Appl. Sci. 10, 8155 (2020). https://doi.org/10.3390/app10228155
P. Dhar, A. Kumar, V. Katiyar, Fabrication of cellulose nanocrystal supported stable Fe(0) nanoparticles: A sustainable catalyst for dye reduction, organic conversion and chemo-magnetic propulsion. Cellulose 22, 3755–3771 (2015). https://doi.org/10.1007/s10570-015-0759-z
A. Dufresne, Nanocellulose: a new ageless bionanomaterial. Mater. Today. 16(6), 220–227 (2013). https://doi.org/10.1016/j.mattod.2013.06.004
A. Dutta, M. Chetia, A.A. Ali, A. Bordoloi, P.S. Gehlot, A. Kumar, D. Sarma, Copper nanoparticles immobilized on nanocellulose: A novel and efficient heterogeneous catalyst for controlled and selective oxidation of sulfides and alcohols. Catal. Lett. 149, 141–150 (2019). https://doi.org/10.1007/s10562-018-2615-x
S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell, A. Dufresne, K.M. Entwistle, P.J. Herrera-Franco, G.C. Escamilla, L. Groom, M. Hughes, C. Hill, T.G. Rials, P.M. Wild, Review: Current international research into cellulosic fibres and composites. J. Mater. Sci. 369(36), 2107–2131 (2001). https://doi.org/10.1023/A:1017512029696
W.H. Eisa, A.M. Abdelgawad, O.J. Rojas, Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain. Chem. Eng. 6, 3974–3983 (2018). https://doi.org/10.1021/acssuschemeng.7b04333
C.J. Elsevier , J.G. de Vries, Multiphase Homogeneous Catalysis Quaternary Stereocenters (2007)
M. Goswami, A.M. Das, Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for C N coupling reactions under mild conditions. Carbohydr. Polym. 195, 189–198 (2018). https://doi.org/10.1016/j.carbpol.2018.04.033
G.K. Gupta, P. Shukla, Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Front. Chem. 8, 1–13 (2020). https://doi.org/10.3389/fchem.2020.601256
Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010). https://doi.org/10.1021/cr900339w
J. Han, C. Zhou, Y. Wu, F. Liu, Q. Wu, Self-assembling behavior of cellulose nanoparticles during freeze-drying: Effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14, 1529–1540 (2013). https://doi.org/10.1021/bm4001734
R.F. Heck, Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc. 90, 5518–5526 (1968a). https://doi.org/10.1021/ja01022a034
R.F. Heck, Allylation of aromatic compounds with organopalladium salts. J. Am. Chem. Soc. 90, 5531–5534 (1968b). https://doi.org/10.1021/ja01022a036
Helmiyati, Y. Anggraini, Nanocomposites comprising cellulose and nanomagnetite as heterogeneous catalysts for the synthesis of biodiesel from oleic acid. Int. J. Technol. 10, 798–807 (2019). https://doi.org/10.14716/ijtech.v10i4.2597
S. Hokkanen, E. Repo, T. Suopajärvi, H. Liimatainen, J. Niinimaa, M. Sillanpää, Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21, 1471–1487 (2014). https://doi.org/10.1007/s10570-014-0240-4
J.-L. Huang, D.G. Gray, C.-J. Li, A 3 -coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein J. Org. Chem. 9, 1388–1396 (2013). https://doi.org/10.3762/bjoc.9.155
T. Imai, J. Sugiyama, T. Itoh, F. Horii, Almost pure Iα cellulose in the cell wall of glaucocystis. J. Struct. Biol. 127, 248–257 (1999). https://doi.org/10.1006/jsbi.1999.4160
L. Johnson, W. Thielemans, D.A. Walsh, Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent. Green Chem. 13, 1686 (2011). https://doi.org/10.1039/c0gc00881h
L. Johnson, W. Thielemans, D.A. Walsh, Nanocomposite oxygen reduction electrocatalysts formed using bioderived reducing agents. J. Mater. Chem. 20, 1737 (2010). https://doi.org/10.1039/b922423h
M. Kaur, S. Kumari, P. Sharma, Chemically modified nanocellulose from rice husk: Synthesis and characterisation. Adv. Res. 13, 1–11 (2018). https://doi.org/10.9734/AIR/2018/38934
T. Kaur, R.P. Singh, Carbohydrate biopolymers: Diversity, applications, and challenges. Bioact. Nat. Prod. Drug Discov., 517–545 (2020). https://doi.org/10.1007/978-981-15-1394-7_18
M. Kaushik, K. Basu, C. Benoit, C.M. Cirtiu, H. Vali, A. Moores, Cellulose nanocrystals as chiral inducers: Enantioselective catalysis and transmission electron microscopy 3D characterization. J. Am. Chem. Soc. 137, 6124–6127 (2015a). https://doi.org/10.1021/jacs.5b02034
M. Kaushik, H.M. Friedman, M. Bateman, A. Moores, Cellulose nanocrystals as non-innocent supports for the synthesis of ruthenium nanoparticles and their application to arene hydrogenation. RSC Adv. 5, 53207–53210 (2015b). https://doi.org/10.1039/C5RA08675B
M. Kaushik, A.Y. Li, R. Hudson, M. Masnadi, C.-J. Li, A. Moores, Reversing aggregation: Direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. Green Chem. 18, 129–133 (2016). https://doi.org/10.1039/C5GC01281C
H. Khanjanzadeh, R. Behrooz, N. Bahramifar, W. Gindl-Altmutter, M. Bacher, M. Edler, T. Griesser, Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int. J. Biol. Macromol. 106, 1288–1296 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.136
H. Khanjanzadeh, B.-D. Park, Optimum oxidation for direct and efficient extraction of carboxylated cellulose nanocrystals from recycled MDF fibers by ammonium persulfate. Carbohydr. Polym. 251, 117029 (2021). https://doi.org/10.1016/j.carbpol.2020.117029
D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chemie Int. Ed. 44, 3358–3393 (2005). https://doi.org/10.1002/anie.200460587
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocellulosen: eine neue Familie naturbasierter Materialien. Angew. Chemie 123, 5550–5580 (2011). https://doi.org/10.1002/ange.201001273
V. Kokol, M. Božič, R. Vogrinčič, A.P. Mathew, Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr. Polym. 125, 301–313 (2015). https://doi.org/10.1016/j.carbpol.2015.02.056
I. Kostova, S. Bhatia, P. Grigorov, S.S. Balkansky, V.K. Parmar, A. Prasad, L. Saso, Coumarins as Antioxidants. Curr. Med. Chem. 18, 3929–3951 (2011). https://doi.org/10.2174/092986711803414395
E. Lam, K.B. Male, J.H. Chong, A.C.W. Leung, J.H.T. Luong, Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30, 283–290 (2012). https://doi.org/10.1016/j.tibtech.2012.02.001
L. Lebogang, R. Bosigo, K. Lefatshe, C. Muiva, Ag3PO4/nanocellulose composite for effective sunlight driven photodegradation of organic dyes in wastewater. Mater. Chem. Phys. 236, 121756 (2019). https://doi.org/10.1016/j.matchemphys.2019.121756
J.H. Lee, S.H. Park, S.H. Kim, Surface alkylation of cellulose nanocrystals to enhance their compatibility with polylactide. Polymers (Basel) 12, 178 (2020). https://doi.org/10.3390/polym12010178
G. Li, J. Yu, Z. Zhou, R. Li, Z. Xiang, Q. Cao, L. Zhao, X. Wang, X. Peng, H. Liu, W. Zhou, N-doped Mo2C nanobelts/graphene nanosheets bonded with hydroxy nanocellulose as flexible and editable electrode for hydrogen evolution reaction. iScience 19, 1090–1100 (2019). https://doi.org/10.1016/j.isci.2019.08.055
H. Liang, K. Liu, Y. Ni, Synthesis of mesoporous α-Fe2O3 via sol–gel methods using cellulose nano-crystals (CNC) as template and its photo-catalytic properties. Mater. Lett. 159, 218–220 (2015). https://doi.org/10.1016/j.matlet.2015.06.103
C. Lin, B. Chen, Y. Liu, Y. Chen, M. Liu, J. Zhu, Carboxylated cellulose nanocrystals with chiral nematic property from cotton by dicarboxylic acid hydrolysis. Carbohydr. Polym. 264, 118039 (2021). https://doi.org/10.1016/j.carbpol.2021.118039
Z. Ling, K. Wang, W. Liu, W. Tang, Q. Yong, Tuning the cellulose nanocrystal alignments for supramolecular assembly of chiral nematic films with highly efficient UVB shielding capability. J. Mater. Chem. C 8, 8493–8501 (2020). https://doi.org/10.1039/D0TC01626H
J. Liu, A. Plog, P. Groszewicz, L. Zhao, Y. Xu, H. Breitzke, A. Stark, R. Hoffmann, T. Gutmann, K. Zhang, G. Buntkowsky, Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: Synthesis and solid-state NMR characterization. Chem. – A Eur. J. 21, 12414–12420 (2015). https://doi.org/10.1002/chem.201501151
A.R. Lokanathan, K.M.A. Uddin, O.J. Rojas, J. Laine, Cellulose nanocrystal-mediated synthesis of silver nanoparticles: Role of sulfate groups in nucleation phenomena. Biomacromolecules 15, 373–379 (2014). https://doi.org/10.1021/bm401613h
Q.-L. Lu, J. Wu, Y. Li, L. Li, B. Huang, One-pot green extraction of high charge density cellulose nanocrystals with high yield for bionanocomposites. J. Mater. Sci. 56, 12212–12223 (2021). https://doi.org/10.1007/s10853-021-06085-9
B.B.F. Mirjalili, M. Imani, Fe 3 O 4 @NCs/BF 0.2 : A magnetic bio-based nanocatalyst for the synthesis of 2,3-dihydro-1 H -perimidines. J. Chinese Chem. Soc. 66, 1542–1549 (2019). https://doi.org/10.1002/jccs.201900004
A. Mirosanloo, D. Zareyee, M. A. Khalilzadeh, Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl. Organomet. Chem. 32(12), e4546 (2018). https://doi.org/10.1002/aoc.4546
T. Mizoroki, K. Mori, A. Ozaki, Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn. 44, 581–581 (1971). https://doi.org/10.1246/bcsj.44.581
N. Mohammed, H. Lian, M.S. Islam, M. Strong, Z. Shi, R.M. Berry, H.-Y. Yu, K.C. Tam, Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem. Eng. J. 417, 129237 (2021). https://doi.org/10.1016/j.cej.2021.129237
V. Moodley, S. Maddila, S.B. Jonnalagadda, W.E. van Zyl, Retraction: Synthesis of triazolidine-3-one derivatives through the nanocellulose/hydroxyapatite-catalyzed reaction of aldehydes and semicarbazide. New J. Chem. 44, 18954–18954 (2020). https://doi.org/10.1039/D0NJ90154G
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941 (2011). https://doi.org/10.1039/c0cs00108b
S.S. Nair, J. Chen, A. Slabon, A.P. Mathew, Converting cellulose nanocrystals into photocatalysts by functionalisation with titanium dioxide nanorods and gold nanocrystals. RSC Adv. 10, 37374–37381 (2020). https://doi.org/10.1039/D0RA05961G
M. Nasir, R. Hashim, O. Sulaiman, M. Asim, Nanocellulose: Preparation Methods and Applications, Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications (Elsevier Ltd., 2017). https://doi.org/10.1016/B978-0-08-100957-4.00011-5
N.H. Nazri, Y. Kumar, M.A. Ramlan, M.H. Mohammad Kassim, M.S. Hossain, N.H. Mohd Kaus, Physico-mechanical study of CMC/BFO/PoPD nanocomposite films reinforced with cellulose nanocrystals (CNCMCC) for effective photocatalytic removal of methyl orange. J. Compos. Sci. 5, 142 (2021). https://doi.org/10.3390/jcs5060142
K. Nikoofar, H. Heidari, Y. Shahedi, Nano crystalline cellulose sulfuric acid (s-NCC): A novel green nanocatalyst for the synthesis of polyhydroxy pyrimidine-fused heterocyclic compounds (PPFHs). Cellulose 25, 5697–5709 (2018). https://doi.org/10.1007/s10570-018-1942-9
Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002). https://doi.org/10.1021/ja0257319
Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose I α from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003). https://doi.org/10.1021/ja037055w
R. Noyori, M. Aoki, K. Sato, Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 1977, 1977 (2003). https://doi.org/10.1039/b303160h
A.C. O’sullvian, Cellulose: The structure slowly unravels. Cellulose 4, 173–207 (1997)
O.A. Oyewo, A. Adeniyi, B.B. Sithole, M.S. Onyango, Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of methylene blue dye. ACS Omega 5, 18798–18807 (2020). https://doi.org/10.1021/acsomega.0c01924
E. Pacsu, Molecular structure of cellulose and starch. J. Polym. Sci. 2(6), 565–582 (1947). https://doi.org/10.1002/pol.1947.120020602
N. Pandi, S.H. Sonawane, K. Anand Kishore, Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason. Sonochem. 70, 105353 (2021). https://doi.org/10.1016/j.ultsonch.2020.105353
R. Paonessa, M. Nardi, M.L. Di Gioia, F. Olivito, M. Oliverio, A. Procopio, Eco-friendly synthesis of lipophilic EGCG derivatives and antitumor and antioxidant evaluation. Nat. Prod. Commun. 13, 1117–1122 (2018). https://doi.org/10.1177/1934578x1801300905
R.J.B. Pinto, N.S. Lameirinhas, G. Guedes, G.H. Rodrigues da Silva, P. Oskoei, S. Spirk, H. Oliveira, I.F. Duarte, C. Vilela, C.S.R. Freire, Cellulose nanocrystals/chitosan-based nanosystems: Synthesis, characterization, and cellular uptake on breast cancer cells. Nano 11, 2057 (2021). https://doi.org/10.3390/nano11082057
R.O.C. Norman, J.M. Coxon, Principles of Organic Synthesis, 3rd edn. (Blackie Academic & Professional, London/New York, 1993)
S. Seyednejhad, M.A. Khalilzadeh, D. Zareyee, H. Sadeghifar, R. Venditti, Cellulose nanocrystal supported palladium as a novel recyclable catalyst for Ullmann coupling reactions. Cellulose 26, 5015–5031 (2019). https://doi.org/10.1007/s10570-019-02436-7
A. Shaabani, S. Keshipour, M. Hamidzad, M. Seyyedhamzeh, Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols. J. Chem. Sci. 126, 111–115 (2014). https://doi.org/10.1007/s12039-013-0535-2
Z. Shayegan, C-S. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chem. Eng. J. 334, 2408–2439 (2018). https://doi.org/10.1016/j.cej.2017.09.153
M. Shen, K. Gao, F. Xiang, B. Wang, L. Dai, L. Zheng, F. Baker, C. Duan, Y. Zhang, S. Sun, Y. Ni, Nanocellulose-assisted synthesis of ultrafine Co nanoparticles-loaded bimodal micro-mesoporous N-rich carbon as bifunctional oxygen electrode for Zn-air batteries. J. Power Sources 450, 227640 (2020). https://doi.org/10.1016/j.jpowsour.2019.227640
M. Shen, W. Hu, G. Yang, Q. Wang, C. Duan, Y. Ni, TEMPO-mediated oxidized cellulose nanofibers-Cd2+ derived hierarchically porous carbon aerogel for oxygen reduction electrocatalysis. J. Electroanal. Chem. 910, 116168 (2022). https://doi.org/10.1016/j.jelechem.2022.116168
W.-C. Sun, K.R. Gee, R.P. Haugland, Synthesis of novel fluorinated coumarins: Excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett. 8, 3107–3110 (1998). https://doi.org/10.1016/S0960-894X(98)00578-2
M.I. Swasy, B.R. Brummel, C. Narangoda, M.F. Attia, J.M. Hawk, F. Alexis, D.C. Whitehead, Degradation of pesticides using amine-functionalized cellulose nanocrystals. RSC Adv. 10, 44312–44322 (2020). https://doi.org/10.1039/D0RA08308A
B. Thomas, M.C. Raj, B.K. Athira, H.M. Rubiyah, J. Joy, A. Moores, G.L. Drisko, C. Sanchez, Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chem. Rev. 118, 11575–11625 (2018). https://doi.org/10.1021/acs.chemrev.7b00627
M.A. Torlopov, I.S. Martakov, V.I. Mikhaylov, P.V. Legki, Y.A. Golubev, E.F. Krivoshapkina, C. Tracey, P.A. Sitnikov, E.V. Udoratina, Manipulating the colloidal properties of (non-)sulfated cellulose nanocrystals via stepwise surface cyanoethylation/carboxylation. Eur. Polym. J. 115, 225–233 (2019). https://doi.org/10.1016/j.eurpolymj.2019.03.043
D. Trache, M.H. Hussin, C.T. Hui Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T.M. Hassan, M.K.M. Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int. J. Biol. Macromol. 93, 789–804 (2016). https://doi.org/10.1016/j.ijbiomac.2016.09.056
J. Tsuji, H. Takahashi, M. Morikawa, Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Lett. 6, 4387–4388 (1965). https://doi.org/10.1016/S0040-4039(00)71674-1
J.C. Védrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. Chem. Sus. Chem. 12, 577–588 (2019). https://doi.org/10.1002/cssc.201802248
M. Wada, H. Chanzy, Y. Nishiyama, P. Langan, Cellulose III I crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37, 8548–8555 (2004). https://doi.org/10.1021/ma0485585
H. Wang, M. Zuo, N. Ding, G. Yan, X. Zeng, X. Tang, Y. Sun, T. Lei, L. Lin, Preparation of nanocellulose with high-pressure homogenization from pretreated biomass with cooking with active oxygen and solid alkali. ACS Sustain. Chem. Eng. 7, 9378–9386 (2019). https://doi.org/10.1021/acssuschemeng.9b00582
Q. Wang, P.C. Nnanna, F. Shen, M. Huang, D. Tian, J. Hu, Y. Zeng, G. Yang, S. Deng, Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop. Ind. Crop. Prod. 162, 113256 (2021). https://doi.org/10.1016/j.indcrop.2021.113256
J. Xiong, Y. Wang, Q. Xue, X. Wu, Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 13, 900 (2011). https://doi.org/10.1039/c0gc00772b
L. Xu, J. Yu, L. Jin, L. Pan, Design, synthesis, and antifungal activity of 4-amino coumarin based derivatives. Molecules 27, 2738 (2022). https://doi.org/10.3390/molecules27092738
T. Yasukawa, H. Miyamura, S. Kobayashi, Cellulose-supported chiral rhodium nanoparticles as sustainable heterogeneous catalysts for asymmetric carbon–carbon bond-forming reactions. Chem. Sci. 6, 6224–6229 (2015). https://doi.org/10.1039/C5SC02510A
Q. Yu, W. Yang, Q. Wang, W. Dong, M. Du, P. Ma, Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydr. Polym. 217, 168–177 (2019). https://doi.org/10.1016/j.carbpol.2019.04.049
B. Yuan, L. Li, V. Murugadoss, S. Vupputuri, J. Wang, N. Alikhani, Z. Guo, Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food Agrofor. (2020). https://doi.org/10.30919/esfaf0004
S.H. Zeronian, H.-S. Ryu, Properties of cotton fibers containing the cellulose IV crystal structure. J. Appl. Polym. Sci. 33, 2587–2604 (1987). https://doi.org/10.1002/app.1987.070330725
Y. Zhan, Y. Meng, W. Li, Z. Chen, N. Yan, Y. Li, M. Teng, Magnetic recoverable MnFe2O4/cellulose nanocrystal composites as an efficient catalyst for decomposition of methylene blue. Ind. Crop. Prod. 122, 422–429 (2018). https://doi.org/10.1016/j.indcrop.2018.06.043
N. Zhang, Q. Zhang, C. Xu, Y. Li, J.Y. Zhang, L. Wu, Y. Liu, Y.Z. Fang, Z. Liu, Optional construction of Cu2O@Fe2O3@CC architecture as a robust multifunctional photoelectronic catalyst for overall water splitting and CO2 reduction. Chem. Eng. J. 426, 131192 (2021). https://doi.org/10.1016/j.cej.2021.131192
S. Zhang, D. Zhao, C. Hou, C. Liang, H. Li, Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction. J. Nanopart. Res. 20, 161 (2018). https://doi.org/10.1007/s11051-018-4259-6
C. Zhao, F. Ran, L. Dai, C. Li, C. Zheng, C. Si, Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydr. Polym. 255, 117343 (2021). https://doi.org/10.1016/j.carbpol.2020.117343
P. Zhou, H. Wang, J. Yang, J. Tang, D. Sun, W. Tang, Bacteria cellulose nanofibers supported palladium(0) nanocomposite and its catalysis evaluation in Heck reaction. Ind. Eng. Chem. Res. 51, 5743–5748 (2012). https://doi.org/10.1021/ie300395q
H. Zhu, X. Yang, E.D. Cranston, S. Zhu, Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 28, 7652–7657 (2016). https://doi.org/10.1002/adma.201601351
Acknowledgments
We thank the University Grants Commission, Government of India, for the financial support of the UGC Major Research Project (No. F. No. 42-300/2013(SR)). Dr. Bejoy expresses gratitude to the Department of Science and Technology for supporting the college’s Fund for Improvement of S&T Infrastructure (FIST) program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Rubiyah, M.H., Melethil, K., James, A., Varghese, S., Thomas, B. (2022). Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_34-1
Download citation
DOI: https://doi.org/10.1007/978-981-16-6603-2_34-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-6603-2
Online ISBN: 978-981-16-6603-2
eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics