Skip to main content

Biopolymer-Based Blends

  • 12 Accesses

Abstract

The indispensable nature of plastic-based materials in packaging processes and their widespread global dependency marks an era of a “plastic crisis” with toxicological and environmental consequences to all living entities in our ecosystem. The potential biohazards associated with plastic manufacturing industries resulting from the chemical breakdown to toxic components present a challenging technological issue. While the petroleum-based plastic market is predicted to shrink marked by a notable effort toward an emerging bioplastic market bearing a low environmental load, the shift is expected to abolish the dependency on plastic use in a plastic-free society. The bioplastic growth trajectory is discretely rising, but advancements have been dampened by price economics and the underperformance of biobased plastics due to material properties in comparison to their counterparts. Polymer bending is considered an important route in the design of new materials’ properties to incorporate adhesive and interfacial features to impart biodegradable characteristics in the form of bioplastics. This chapter aims to present various approaches to blending strategies and to discuss the physical and chemical limitations of polymer blending, and structure-property relationships can yield bioplastics as viable materials.

Keywords

  • Bioplastics
  • Polymer blends
  • Compolymerization
  • Biodegradability
  • Biopolymers
  • Microbial degradation

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  • S.A. Adli, F. Ali, A.S. Azmi, H. Anuar, N.A.M. Nasir, R. Hasham, M.K.H. Idris, Development of biodegradable cosmetic patch using a polylactic acid/phycocyanin-alginate composite. Polymers 12(8), 1669 (2020)

    CrossRef  CAS  Google Scholar 

  • A.-C. Albertsson, C. Barenstedt, S. Karlsson, Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polymerica 45(2), 97–103 (1994)

    CrossRef  CAS  Google Scholar 

  • A.M.A. Ambrosio, H.R. Allcock, D.S. Katti, C.T. Laurencin, Degradable polyphosphazene/poly(α-hydroxyester) blends: degradation studies. Biomaterials 23(7), 1667–1672 (2002)

    CrossRef  CAS  Google Scholar 

  • Y.G. Ángeles-López, A. Gutiérrez-Mayen, M. Velasco-Pérez, M. Villavicencio Beltrán, M. Cano-Blanco, Preface: international conference on recent trends in physics (ICRTP 2016). J. Phys. Conf. Ser. 755(1), 011001 (2016)

    Google Scholar 

  • W.H. Bassett, Polycarbonate-Polyester Blends. US4981898A (1991)

    Google Scholar 

  • A. Be’er, R.M. Harshey, Collective motion of surfactant-producing bacteria imparts superdiffusivity to their upper surface. Biophys. J. 101(5), 1017–1024 (2011)

    CrossRef  Google Scholar 

  • S.L. Belontz, P.L. Corcoran, H. Davis, K.A. Hill, K. Jazvac, K. Robertson, K. Wood, Embracing an interdisciplinary approach to plastics pollution awareness and action. Ambio 48, 855–866 (2019)

    CrossRef  Google Scholar 

  • M. Bergmann et al., Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 3, 323–337 (2022)

    CrossRef  CAS  Google Scholar 

  • B. Björkner, Plasticizers and other additives in synthetic polymers, in Handbook of Occupational Dermatology, ed. by L. Kanerva, J. E. Wahlberg, P. Elsner, H. I. Maibach, (Springer, Berlin/Heidelberg, 2000)

    Google Scholar 

  • A. Chamas et al., Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020)

    CrossRef  CAS  Google Scholar 

  • C.M. Chan, L.T. Weng, Surface characterization of polymer blends by XPS and ToF-SIMS. Materials 9(8), 655 (2016)

    CrossRef  Google Scholar 

  • S. Chen, Y. Fuchen, Y. Qiuming, Y. He, S. Jiang, Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir 22(19), 8186–8191 (2006)

    CrossRef  CAS  Google Scholar 

  • S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23), 5283–5293 (2010)

    CrossRef  CAS  Google Scholar 

  • H.S. Cho, H.S. Moon, M. Kim, K. Nam, J.Y. Kim, Biodegradability and biodegradation rate of poly(Caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Manag. 31(3), 475–480 (2011)

    CrossRef  CAS  Google Scholar 

  • G.A. El-Hiti, D.S. Ahmed, E. Yousif, O.S.A. Al-Khazrajy, M. Abdallh, S.A. Alanazi, Modifications of polymers through the addition of ultraviolet absorbers to reduce the aging effect of accelerated and natural irradiation. Polymers 14(20), (2022)

    Google Scholar 

  • J. Entwistle, D.E. Latta, M.M. Scherer, A. Neumann, Abiotic degradation of chlorinated solvents by clay minerals and Fe(II): evidence for reactive mineral intermediates. Environ. Sci. Technol. 53(24), 14308–14318 (2019)

    CrossRef  CAS  Google Scholar 

  • R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), 25–29 (2017)

    CrossRef  Google Scholar 

  • F.P. Guengerich, F.K. Yoshimoto, Formation and cleavage of C-C bonds by enzymatic oxidation-reduction reactions. Chem. Rev. 118, 6573 (2018)

    CrossRef  CAS  Google Scholar 

  • D. Hadad, S. Geresh, A. Sivan, Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98(5), 1093–1100 (2005)

    CrossRef  CAS  Google Scholar 

  • M. Hakkarainen, A.C. Albertsson, Environmental degradation of polyethylene, in Long-Term Properties of Polyolefins. Advances in Polymer Science, ed. by A.C. Albertsson, vol. 169. (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  • M. Hasan, et al., IOP Conf. Ser. Mater. Sci. Eng. 333, 012087 (2018)

    Google Scholar 

  • A. Hüsler, S. Haas, L. Parry, M. Romero, T. Nisisako, P. Williams, R.D. Wildman, M.R. Alexander, Effect of surfactant on: Pseudomonas aeruginosa colonization of polymer microparticles and flat films. RSC Adv. 8(28), 15352–15357 (2018)

    CrossRef  Google Scholar 

  • J. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015)

    CrossRef  CAS  Google Scholar 

  • X.J. Ju, R. Xie, L. Lang, L.Y. Chu, Biodegradable ‘intelligent’ materials in response to chemical stimuli for biomedical application. Expert Opin. Ther. Pat. 19(5), 683–696 (2009)

    CrossRef  CAS  Google Scholar 

  • C.-h. Jun, Transition metal-catalyzed carbon – carbon bond activation. Chem. Soc. Rev. 33(Scheme 2), 610–618 (2004)

    CrossRef  CAS  Google Scholar 

  • T.H. Kim, J.Y. Chang, J.U. Choi, W.S. Kim, Synthesis and characterization of a polymethacrylate containing photoreactive abietic acid moiety. Macromol. Res. 13, 545 (2005)

    CrossRef  CAS  Google Scholar 

  • H.R. Kim, H.M. Lee, H.C. Yu, E. Jeon, S. Lee, J. Li, D.H. Kim, Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ. Sci. Technol. 54(11), 6987–6996 (2020)

    CrossRef  CAS  Google Scholar 

  • G. Koteswara Reddy, Y. Kiran, A theoretical mechanism in the degradation of polyolefin plastic waste using phytochemical oxidation process. J. Solid Waste Technol. Manag. 45(4), 468–477 (2019)

    CrossRef  Google Scholar 

  • M. Koutny, J. Lemaire, A.M. Delort, Biodegradation of polyethylene films with pro-oxidant additives. Chemosphere 64, 1243–1252 (2006)

    CrossRef  CAS  Google Scholar 

  • G. Lear, S.D.M. Maday, V. Gambarini, G. Northcott, R. Abbel, J.M. Kingsbury, L. Weaver, J.A. Wallbank, O. Pantos, Microbial abilities to degrade global environmental plastic polymer waste are overstated. Environ. Res. Lett. 17(4), 043002 (2022)

    CrossRef  Google Scholar 

  • L. Lebreton, B. Slat, F. Ferrari, B. Sainte-Rose, J. Aitken, R. Marthouse, S. Hajbane, et al., Evidence that the great Pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 8(1), 1–15 (2018)

    CrossRef  CAS  Google Scholar 

  • B. Lee, A.L. Pometto III, B.B. Thedore Jr., Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. App. Environ. Biol. 57(3), 678–685 (1991)

    CrossRef  CAS  Google Scholar 

  • Y. Lin, T.B. Kouznetsova, S.L. Craig, Mechanically gated degradable polymers. J. Am. Chem. Soc. 142(5), 2105–2109 (2020a)

    CrossRef  CAS  Google Scholar 

  • Y. Lin, T.B. Kouznetsova, C.C. Chang, S.L. Craig, Enhanced polymer mechanical degradation through mechanochemically unveiled lactonization. Nat. Commun. 11(1), 1–9 (2020b)

    CrossRef  CAS  Google Scholar 

  • J.M. Luz, R. Da, S.A. Paes, D.M.S. Bazzolli, M.R. Tótola, A.J. Demuner, M.C.M. Kasuya, Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One 9(11), e107438 (2014)

    CrossRef  Google Scholar 

  • E. McGivney, L. Cederholm, A. Barth, M. Hakkarainen, E. Hamacher-Barth, M. Ogonowski, E. Gorokhova, Rapid physicochemical changes in microplastic induced by biofilm formation. Front. Bioeng. Biotechnol. 8, 20200301 (2020)

    CrossRef  Google Scholar 

  • S. Mecking, Chemistry can help make plastics sustainable – but it isn’t the whole solution. Nature 590(7846), 363–364 (2021)

    CrossRef  Google Scholar 

  • K. Min, J.D. Cuiffi, R.T. Mathers, Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat. Commun. 11, 727 (2020)

    Google Scholar 

  • T. Morohoshi, T. Oi, H. Aiso, T. Suzuki, T. Okura, S. Sato, Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes Environ. 33(3), 332–335 (2018)

    CrossRef  Google Scholar 

  • K. Muniandy, N. Othman, H. Ismail, Characterization and properties of rattan fibre/natural rubber biocomposites, in Green Biocomposites, ed. by M. Jawaid, S. Sapuan, O. Alothman, (Springer, Cham, 2016)

    Google Scholar 

  • A.V. Nasalapure, R.K. Chalannavar, B.M. Ravindra, Preparation of poly (vinyl alcohol)/chitosan/starch blends and studies on thermal and surface properties. AIP Conf. Proc. 1953, 8–11 (2020)

    Google Scholar 

  • W. Ngwa, W. Luo, A. Kamanyi, K.W. Fomba, W. Grill, Characterization of polymer thin films by phase-sensitive acoustic microscopy and atomic force microscopy: a comparative review. J. Microsc. 218(3), 208–218 (2005)

    CrossRef  CAS  Google Scholar 

  • S.A. Nouh, M.M. Magida, L.S. Al-Shekify, I.I. Bashter, Effect of polymer blend types and gamma radiation on the physico-chemical properties of polycarbonate. Radiat. Eff. Defects Solids 171(11–12), 879–889 (2016)

    CrossRef  CAS  Google Scholar 

  • A.D. Padsalgikar, Biological properties of plastic, in Plastics in Medical Devices for Cardiovascular Applications, (William Andrew Publishing, Oxford, UK, 2017), pp. 83–102

    CrossRef  Google Scholar 

  • D.R. Paul, in Mechanical Behaviour of Materials VI, ed. by M. Jono, T. Inoue, (Pergamon Press, Oxford, 1992), pp. 841–846

    Google Scholar 

  • A.M. Peres, R.R. Pires, R.L. Oréfice, Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr. Polym. 136, 210–215 (2016)

    CrossRef  CAS  Google Scholar 

  • B.S.S. Pokuri, B. Ganapathysubramanian, Morphology control in polymer blend fibers – a high throughput computing approach. Model. Simul. Mater. Sci. Eng. 24(6), 0063 (2016)

    CrossRef  Google Scholar 

  • S. Pundhir, A. Gagneja, Conversion of plastic to hydrocarbon. Int. J. Adv. Chem. Eng. Biol. Sci. 3(1), 121–124 (2016)

    Google Scholar 

  • C. Ranganathaiah, Characterization of interfaces in binary and ternary polymer blends by positron lifetime spectroscopy. J. Phys. Conf. Ser. 618(1), 012022 (2015)

    CrossRef  Google Scholar 

  • J.D. Rogers, E. Michael Thurman, I. Ferrer, J.S. Rosenblum, M.V. Evans, P.J. Mouser, J.N. Ryan, Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. Environ. Sci. Processes. Impacts. 21(2), 256–268 (2019)

    CrossRef  CAS  Google Scholar 

  • A.M. Ronkvist, W. Xie, W. Lu, R.A. Gross, Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules. 42(14), 5128–5138 (2009)

    Google Scholar 

  • C. Sareena, M.P. Sreejith, M.T. Ramesan, E. Purushothaman, Biodegradation behaviour of natural rubber composites reinforced with natural resource fillers – monitoring by soil burial test. J. Reinf. Plast. Compos. 33(5), 412–429 (2014)

    CrossRef  Google Scholar 

  • A.D. Scott, N. Sanjeev, Polymer Blends. US 2013020 (2013)

    Google Scholar 

  • A. Sivan, M. Szanto, V. Pavlov, Biofilm development of the polyethylene-degrading bacterium Rhodococcus Ruber. Appl. Microbiol. Biotechnol. 72(2), 346–352 (2006)

    CrossRef  CAS  Google Scholar 

  • F.A. Soares, A. Steinbüchel, Natural rubber degradation products: fine chemicals and reuse of rubber waste. Eur. Polym. J. 165, 111001 (2022)

    CrossRef  CAS  Google Scholar 

  • G. Suaria, C.G. Avio, A. Mineo, G.L. Lattin, M.G. Magaldi, G. Belmonte, C.J. Moore, F. Regoli, S. Aliani, The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Sci. Rep. 6, 37551 (2016)

    CrossRef  CAS  Google Scholar 

  • UN Environment Programme, Our planet is choking. 2022. https://www.unep.org/interactives/beat-plastic-pollution/

  • M. van den Oever, K. Molenveld, Replacing fossil based plastic performance products by bio-based plastic products–technical feasibility. New Biotechnol. 37, 48–59 (2017)

    CrossRef  Google Scholar 

  • S. Vanhee, R. Koningsveld, H. Berghmans, K. Šolc, W.H. Stockmayer, Thermodynamic stability of immiscible polymer blends. Macromolecules 33(10), 3924–3931 (2000)

    CrossRef  CAS  Google Scholar 

  • I.A. Varyan, A.L. Bobkov, I.A. Mikhailov, N.N. Kolesnikova, Ensuring environmental safety and economic benefits from the use of biodegradable materials based on low-density polyethylene with natural rubber additives as products with a short service life. Macromol. Symp. 395(1), 1–4 (2021)

    CrossRef  Google Scholar 

  • K. Venkatramanan, V. Arumugam, Compatibility studies of blends of PPG 4000 and PEG 4000 using viscosity technique. AIP Conf. Proc. 1249, 59–62 (2010)

    CrossRef  CAS  Google Scholar 

  • I. Vollmer, M.J.F. Jenks, M.C.P. Roelands, R.J. White, T. van Harmelen, P. de Wild, G.P. van der Laan, F. Meirer, J.T.F. Keurentjes, B.M. Weckhuysen, Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402 (2020)

    CrossRef  CAS  Google Scholar 

  • T.W. Walker, N. Frelka, Z. Shen, A.K. Chew, J. Banick, S. Grey, M.S. Kim, J.A. Dumesic, R.C. Van Lehn, G.W. Huber, Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6(47), 1–10 (2020)

    CrossRef  Google Scholar 

  • S. Wolff, J. Kerpen, J. Prediger, L. Barkmann, L. Müller, Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. X. 2, 100014 (2019)

    CrossRef  CAS  Google Scholar 

  • Y. Wu, C. Liu, X. Zhao, J. Xiang, A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. J. Polym. Res. 15(3), 181–185 (2008)

    CrossRef  Google Scholar 

  • G. Wypych, UV degradation and stabilisation of polymers and rubbers, in Handbook of UV Degradation and Stabilization, 2nd edn., (ChemTec Publishing, Toronto, 2015), pp. 177–292

    Google Scholar 

  • Y. Yang, J. Yang, L. Jiang, Comment on “a bacterium that degrades and assimilates poly(ethylene terephthalate)”. Science 353(6301), 759 (2016)

    CrossRef  CAS  Google Scholar 

  • E. Yousif, R. Haddad, No title photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 23(2), 398 (2013)

    CrossRef  Google Scholar 

  • B.I. Yun, New higher order methods for solving nonlinear equations with multiple roots. J. Comput. Appl. Math. 235(5), 1553–1555 (2011)

    CrossRef  Google Scholar 

  • A.E. Zeenat, D.A. Bukhari, S. Shamim, A. Rehman, Plastics degradation by microbes: a sustainable approach. J. King Saud Univ. Sci. 33(6), 101538 (2021). https://doi.org/10.1016/j.jksus.2021.101538

    CrossRef  Google Scholar 

  • Q. Zhang, N.R. Ko, O. Jung Kwon, Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem. Commun. 48(61), 7542–7552 (2012)

    CrossRef  CAS  Google Scholar 

  • K. Zhang et al., Understanding plastic degradation and microplastic formation in the environment: a review. Environ. Pollut. 274, 116554 (2021)

    CrossRef  CAS  Google Scholar 

  • L. Zhao, M. Qu, G. Wong, D. Wang, Transgenerational toxicity of nanopolystyrene particles in the range of μg L-1 in the nematode: Caenorhabditis elegans. Environ. Sci. Nano 4, 2356–2366 (2017)

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Sonkaria, S., Cho, Jh., Jo, H.S., Kim, HJ. (2023). Biopolymer-Based Blends. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6603-2_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6603-2

  • Online ISBN: 978-981-16-6603-2

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science