Abstract
The indispensable nature of plastic-based materials in packaging processes and their widespread global dependency marks an era of a “plastic crisis” with toxicological and environmental consequences to all living entities in our ecosystem. The potential biohazards associated with plastic manufacturing industries resulting from the chemical breakdown to toxic components present a challenging technological issue. While the petroleum-based plastic market is predicted to shrink marked by a notable effort toward an emerging bioplastic market bearing a low environmental load, the shift is expected to abolish the dependency on plastic use in a plastic-free society. The bioplastic growth trajectory is discretely rising, but advancements have been dampened by price economics and the underperformance of biobased plastics due to material properties in comparison to their counterparts. Polymer bending is considered an important route in the design of new materials’ properties to incorporate adhesive and interfacial features to impart biodegradable characteristics in the form of bioplastics. This chapter aims to present various approaches to blending strategies and to discuss the physical and chemical limitations of polymer blending, and structure-property relationships can yield bioplastics as viable materials.
Keywords
- Bioplastics
- Polymer blends
- Compolymerization
- Biodegradability
- Biopolymers
- Microbial degradation
This is a preview of subscription content, access via your institution.



















References
S.A. Adli, F. Ali, A.S. Azmi, H. Anuar, N.A.M. Nasir, R. Hasham, M.K.H. Idris, Development of biodegradable cosmetic patch using a polylactic acid/phycocyanin-alginate composite. Polymers 12(8), 1669 (2020)
A.-C. Albertsson, C. Barenstedt, S. Karlsson, Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polymerica 45(2), 97–103 (1994)
A.M.A. Ambrosio, H.R. Allcock, D.S. Katti, C.T. Laurencin, Degradable polyphosphazene/poly(α-hydroxyester) blends: degradation studies. Biomaterials 23(7), 1667–1672 (2002)
Y.G. Ángeles-López, A. Gutiérrez-Mayen, M. Velasco-Pérez, M. Villavicencio Beltrán, M. Cano-Blanco, Preface: international conference on recent trends in physics (ICRTP 2016). J. Phys. Conf. Ser. 755(1), 011001 (2016)
W.H. Bassett, Polycarbonate-Polyester Blends. US4981898A (1991)
A. Be’er, R.M. Harshey, Collective motion of surfactant-producing bacteria imparts superdiffusivity to their upper surface. Biophys. J. 101(5), 1017–1024 (2011)
S.L. Belontz, P.L. Corcoran, H. Davis, K.A. Hill, K. Jazvac, K. Robertson, K. Wood, Embracing an interdisciplinary approach to plastics pollution awareness and action. Ambio 48, 855–866 (2019)
M. Bergmann et al., Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 3, 323–337 (2022)
B. Björkner, Plasticizers and other additives in synthetic polymers, in Handbook of Occupational Dermatology, ed. by L. Kanerva, J. E. Wahlberg, P. Elsner, H. I. Maibach, (Springer, Berlin/Heidelberg, 2000)
A. Chamas et al., Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020)
C.M. Chan, L.T. Weng, Surface characterization of polymer blends by XPS and ToF-SIMS. Materials 9(8), 655 (2016)
S. Chen, Y. Fuchen, Y. Qiuming, Y. He, S. Jiang, Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir 22(19), 8186–8191 (2006)
S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23), 5283–5293 (2010)
H.S. Cho, H.S. Moon, M. Kim, K. Nam, J.Y. Kim, Biodegradability and biodegradation rate of poly(Caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Manag. 31(3), 475–480 (2011)
G.A. El-Hiti, D.S. Ahmed, E. Yousif, O.S.A. Al-Khazrajy, M. Abdallh, S.A. Alanazi, Modifications of polymers through the addition of ultraviolet absorbers to reduce the aging effect of accelerated and natural irradiation. Polymers 14(20), (2022)
J. Entwistle, D.E. Latta, M.M. Scherer, A. Neumann, Abiotic degradation of chlorinated solvents by clay minerals and Fe(II): evidence for reactive mineral intermediates. Environ. Sci. Technol. 53(24), 14308–14318 (2019)
R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3(7), 25–29 (2017)
F.P. Guengerich, F.K. Yoshimoto, Formation and cleavage of C-C bonds by enzymatic oxidation-reduction reactions. Chem. Rev. 118, 6573 (2018)
D. Hadad, S. Geresh, A. Sivan, Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98(5), 1093–1100 (2005)
M. Hakkarainen, A.C. Albertsson, Environmental degradation of polyethylene, in Long-Term Properties of Polyolefins. Advances in Polymer Science, ed. by A.C. Albertsson, vol. 169. (Springer, Berlin, Heidelberg, 2005)
M. Hasan, et al., IOP Conf. Ser. Mater. Sci. Eng. 333, 012087 (2018)
A. Hüsler, S. Haas, L. Parry, M. Romero, T. Nisisako, P. Williams, R.D. Wildman, M.R. Alexander, Effect of surfactant on: Pseudomonas aeruginosa colonization of polymer microparticles and flat films. RSC Adv. 8(28), 15352–15357 (2018)
J. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Marine pollution. Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015)
X.J. Ju, R. Xie, L. Lang, L.Y. Chu, Biodegradable ‘intelligent’ materials in response to chemical stimuli for biomedical application. Expert Opin. Ther. Pat. 19(5), 683–696 (2009)
C.-h. Jun, Transition metal-catalyzed carbon – carbon bond activation. Chem. Soc. Rev. 33(Scheme 2), 610–618 (2004)
T.H. Kim, J.Y. Chang, J.U. Choi, W.S. Kim, Synthesis and characterization of a polymethacrylate containing photoreactive abietic acid moiety. Macromol. Res. 13, 545 (2005)
H.R. Kim, H.M. Lee, H.C. Yu, E. Jeon, S. Lee, J. Li, D.H. Kim, Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ. Sci. Technol. 54(11), 6987–6996 (2020)
G. Koteswara Reddy, Y. Kiran, A theoretical mechanism in the degradation of polyolefin plastic waste using phytochemical oxidation process. J. Solid Waste Technol. Manag. 45(4), 468–477 (2019)
M. Koutny, J. Lemaire, A.M. Delort, Biodegradation of polyethylene films with pro-oxidant additives. Chemosphere 64, 1243–1252 (2006)
G. Lear, S.D.M. Maday, V. Gambarini, G. Northcott, R. Abbel, J.M. Kingsbury, L. Weaver, J.A. Wallbank, O. Pantos, Microbial abilities to degrade global environmental plastic polymer waste are overstated. Environ. Res. Lett. 17(4), 043002 (2022)
L. Lebreton, B. Slat, F. Ferrari, B. Sainte-Rose, J. Aitken, R. Marthouse, S. Hajbane, et al., Evidence that the great Pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 8(1), 1–15 (2018)
B. Lee, A.L. Pometto III, B.B. Thedore Jr., Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species. App. Environ. Biol. 57(3), 678–685 (1991)
Y. Lin, T.B. Kouznetsova, S.L. Craig, Mechanically gated degradable polymers. J. Am. Chem. Soc. 142(5), 2105–2109 (2020a)
Y. Lin, T.B. Kouznetsova, C.C. Chang, S.L. Craig, Enhanced polymer mechanical degradation through mechanochemically unveiled lactonization. Nat. Commun. 11(1), 1–9 (2020b)
J.M. Luz, R. Da, S.A. Paes, D.M.S. Bazzolli, M.R. Tótola, A.J. Demuner, M.C.M. Kasuya, Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One 9(11), e107438 (2014)
E. McGivney, L. Cederholm, A. Barth, M. Hakkarainen, E. Hamacher-Barth, M. Ogonowski, E. Gorokhova, Rapid physicochemical changes in microplastic induced by biofilm formation. Front. Bioeng. Biotechnol. 8, 20200301 (2020)
S. Mecking, Chemistry can help make plastics sustainable – but it isn’t the whole solution. Nature 590(7846), 363–364 (2021)
K. Min, J.D. Cuiffi, R.T. Mathers, Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat. Commun. 11, 727 (2020)
T. Morohoshi, T. Oi, H. Aiso, T. Suzuki, T. Okura, S. Sato, Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes Environ. 33(3), 332–335 (2018)
K. Muniandy, N. Othman, H. Ismail, Characterization and properties of rattan fibre/natural rubber biocomposites, in Green Biocomposites, ed. by M. Jawaid, S. Sapuan, O. Alothman, (Springer, Cham, 2016)
A.V. Nasalapure, R.K. Chalannavar, B.M. Ravindra, Preparation of poly (vinyl alcohol)/chitosan/starch blends and studies on thermal and surface properties. AIP Conf. Proc. 1953, 8–11 (2020)
W. Ngwa, W. Luo, A. Kamanyi, K.W. Fomba, W. Grill, Characterization of polymer thin films by phase-sensitive acoustic microscopy and atomic force microscopy: a comparative review. J. Microsc. 218(3), 208–218 (2005)
S.A. Nouh, M.M. Magida, L.S. Al-Shekify, I.I. Bashter, Effect of polymer blend types and gamma radiation on the physico-chemical properties of polycarbonate. Radiat. Eff. Defects Solids 171(11–12), 879–889 (2016)
A.D. Padsalgikar, Biological properties of plastic, in Plastics in Medical Devices for Cardiovascular Applications, (William Andrew Publishing, Oxford, UK, 2017), pp. 83–102
D.R. Paul, in Mechanical Behaviour of Materials VI, ed. by M. Jono, T. Inoue, (Pergamon Press, Oxford, 1992), pp. 841–846
A.M. Peres, R.R. Pires, R.L. Oréfice, Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr. Polym. 136, 210–215 (2016)
B.S.S. Pokuri, B. Ganapathysubramanian, Morphology control in polymer blend fibers – a high throughput computing approach. Model. Simul. Mater. Sci. Eng. 24(6), 0063 (2016)
S. Pundhir, A. Gagneja, Conversion of plastic to hydrocarbon. Int. J. Adv. Chem. Eng. Biol. Sci. 3(1), 121–124 (2016)
C. Ranganathaiah, Characterization of interfaces in binary and ternary polymer blends by positron lifetime spectroscopy. J. Phys. Conf. Ser. 618(1), 012022 (2015)
J.D. Rogers, E. Michael Thurman, I. Ferrer, J.S. Rosenblum, M.V. Evans, P.J. Mouser, J.N. Ryan, Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. Environ. Sci. Processes. Impacts. 21(2), 256–268 (2019)
A.M. Ronkvist, W. Xie, W. Lu, R.A. Gross, Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules. 42(14), 5128–5138 (2009)
C. Sareena, M.P. Sreejith, M.T. Ramesan, E. Purushothaman, Biodegradation behaviour of natural rubber composites reinforced with natural resource fillers – monitoring by soil burial test. J. Reinf. Plast. Compos. 33(5), 412–429 (2014)
A.D. Scott, N. Sanjeev, Polymer Blends. US 2013020 (2013)
A. Sivan, M. Szanto, V. Pavlov, Biofilm development of the polyethylene-degrading bacterium Rhodococcus Ruber. Appl. Microbiol. Biotechnol. 72(2), 346–352 (2006)
F.A. Soares, A. Steinbüchel, Natural rubber degradation products: fine chemicals and reuse of rubber waste. Eur. Polym. J. 165, 111001 (2022)
G. Suaria, C.G. Avio, A. Mineo, G.L. Lattin, M.G. Magaldi, G. Belmonte, C.J. Moore, F. Regoli, S. Aliani, The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters. Sci. Rep. 6, 37551 (2016)
UN Environment Programme, Our planet is choking. 2022. https://www.unep.org/interactives/beat-plastic-pollution/
M. van den Oever, K. Molenveld, Replacing fossil based plastic performance products by bio-based plastic products–technical feasibility. New Biotechnol. 37, 48–59 (2017)
S. Vanhee, R. Koningsveld, H. Berghmans, K. Šolc, W.H. Stockmayer, Thermodynamic stability of immiscible polymer blends. Macromolecules 33(10), 3924–3931 (2000)
I.A. Varyan, A.L. Bobkov, I.A. Mikhailov, N.N. Kolesnikova, Ensuring environmental safety and economic benefits from the use of biodegradable materials based on low-density polyethylene with natural rubber additives as products with a short service life. Macromol. Symp. 395(1), 1–4 (2021)
K. Venkatramanan, V. Arumugam, Compatibility studies of blends of PPG 4000 and PEG 4000 using viscosity technique. AIP Conf. Proc. 1249, 59–62 (2010)
I. Vollmer, M.J.F. Jenks, M.C.P. Roelands, R.J. White, T. van Harmelen, P. de Wild, G.P. van der Laan, F. Meirer, J.T.F. Keurentjes, B.M. Weckhuysen, Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402 (2020)
T.W. Walker, N. Frelka, Z. Shen, A.K. Chew, J. Banick, S. Grey, M.S. Kim, J.A. Dumesic, R.C. Van Lehn, G.W. Huber, Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6(47), 1–10 (2020)
S. Wolff, J. Kerpen, J. Prediger, L. Barkmann, L. Müller, Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. X. 2, 100014 (2019)
Y. Wu, C. Liu, X. Zhao, J. Xiang, A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. J. Polym. Res. 15(3), 181–185 (2008)
G. Wypych, UV degradation and stabilisation of polymers and rubbers, in Handbook of UV Degradation and Stabilization, 2nd edn., (ChemTec Publishing, Toronto, 2015), pp. 177–292
Y. Yang, J. Yang, L. Jiang, Comment on “a bacterium that degrades and assimilates poly(ethylene terephthalate)”. Science 353(6301), 759 (2016)
E. Yousif, R. Haddad, No title photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 23(2), 398 (2013)
B.I. Yun, New higher order methods for solving nonlinear equations with multiple roots. J. Comput. Appl. Math. 235(5), 1553–1555 (2011)
A.E. Zeenat, D.A. Bukhari, S. Shamim, A. Rehman, Plastics degradation by microbes: a sustainable approach. J. King Saud Univ. Sci. 33(6), 101538 (2021). https://doi.org/10.1016/j.jksus.2021.101538
Q. Zhang, N.R. Ko, O. Jung Kwon, Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem. Commun. 48(61), 7542–7552 (2012)
K. Zhang et al., Understanding plastic degradation and microplastic formation in the environment: a review. Environ. Pollut. 274, 116554 (2021)
L. Zhao, M. Qu, G. Wong, D. Wang, Transgenerational toxicity of nanopolystyrene particles in the range of μg L-1 in the nematode: Caenorhabditis elegans. Environ. Sci. Nano 4, 2356–2366 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Sonkaria, S., Cho, Jh., Jo, H.S., Kim, HJ. (2023). Biopolymer-Based Blends. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_15-1
Download citation
DOI: https://doi.org/10.1007/978-981-16-6603-2_15-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-6603-2
Online ISBN: 978-981-16-6603-2
eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science