Skip to main content

Bioengineering Technique Progress of Direct Cardiac Reprogramming

A New Perspective from Microbubbles and UTMD

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

The combination of heart-specific transcription factors GATA4, MEF2C, and TBX5 (GMT) has been proven to have the ability to directly reprogram cardiac fibroblasts; this approach is considered a promising regenerative technique. Meanwhile, research on microbubbles as biological vectors has made great progress in recent years. This study describes the loading of GMT lentiviral vectors on cationic microbubbles and the release of these direct-reprogramming vectors into an infarcted myocardium by ultrasound targeted microbubble destruction (UTMD) to repair the cardiac tissue. Lentivirus which encode GATA4, MEF2C, and TBX5 transcription factors were generated via a lentiviral production system and were confirmed to have a direct reprogramming ability in vitro. Combined with the cationic microbubbles, UTMD-mediated gene delivery was evaluated, and the gene transfection efficiency was optimized in an in vitro experiment on rat cardiac fibroblasts. With UTMD-mediated direct reprogramming, the viral vector particles were directly deposited in cardiac tissue and repaired the infarcted myocardium. An immunofluorescence assay and histological examination confirmed newborn cardiomyocytes and neo-angiogenesis after a 4-week follow-up of the treated rats. All treated groups showed ventricular-function improvement according to cardiac magnetic resonance imaging and echocardiography. This chapter reports a novel strategy for the delivery of direct-reprogramming lentiviral vectors to a target acute myocardial infarction zone by using UTMD as a tissue repair therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CFs:

Cardiac fibroblasts

cTnI:

Cardiac troponin-I

cTnT:

Cardiac troponin-I

GMT:

Gata4, MEF2c, and TBX5

H&E:

Hematoxylin and Eosin

HDAC:

Histone deacetylase

HIV:

Human immunodeficiency virus

iCMs:

Induced cardiomyocyte-like cells

IHD:

Ischemic heart disease

iPSCs:

Induced pluripotent stem cells

LAD:

Left anterior descending

LV:

Left ventricle

LVEF:

LV-ejection fraction

MCAs:

Microbubble ultrasound contrast agents

MI:

Myocardial infarction

UTMD:

Ultrasound-targeted microbubble destruction

References

  • Adams E, McCloy R, Jordan A, Falconer K, Dykes IM (2021) Direct reprogramming of cardiac fibroblasts to repair the injured heart. J Cardiovasc Dev Dis 8:72. https://doi.org/10.3390/jcdd8070072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed RPH, Ashraf M, Buccini S, Shujia J, Haider KH (2011) Cardiac tumorigenic potential of induced pluripotent stem cells in host: a note of caution. Regenerative Med 6:171–178

    Article  CAS  Google Scholar 

  • Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:865–871

    Article  CAS  Google Scholar 

  • Alfar EA, El-Armouche A, Guan K (2018) MicroRNAs in cardiomyocyte differentiation and maturation. Cardiovasc Res 114(6):779–781. https://doi.org/10.1093/cvr/cvy065

    Article  CAS  PubMed  Google Scholar 

  • Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, Saafir T et al (2013) Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 128(17):1897–1909. https://doi.org/10.1161/CIRCULATIONAHA.113.004228

    Article  CAS  PubMed  Google Scholar 

  • Ban K, Wile B, Cho KW, Kim S, Song MK, Kim SY, Singer J et al (2015) Non-genetic purification of ventricular cardiomyocytes from differentiating embryonic stem cells through molecular beacons targeting IRX-4. Stem Cell Rep 5(6):1239–1249. https://doi.org/10.1016/j.stemcr.2015

    Article  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon RA, Dimmeler S (2015) Micrornas in myocardial infarction. Nat Rev Cardiol 12:135–142

    Article  CAS  PubMed  Google Scholar 

  • Buccini S, Haider KH, Ahmed RPH, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107(6):301–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao S, Zhou Q, Chen JL, Cui JJ, Shan YG, Hu B, Guo RQ (2017a) Comparison of intracoronary and intravenous ultrasound-targeted microbubble destruction-mediated Ang1 gene transfection on left ventricular remodeling in canines with acute myocardial infarction. J Cardiovasc Pharmacol 70:25–33

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Zhou Q, Chen JL, Jiang N, Wang YJ, Deng Q, Hu B, Guo RQ (2017b) Enhanced effect of nuclear localization signal peptide during ultrasound targeted microbubble destruction mediated gene transfection. Mol Med Rep 16:565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893. https://doi.org/10.1016/j.jacc.2007.07.054

    Article  PubMed  Google Scholar 

  • Castle J, Feinstein SB (2016) Drug and gene delivery using Sonoporation for cardiovascular disease. Adv Exp Med Biol 880:331–338

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Matkar H, Afrasiabi PN, Kuliszewski K, Leong-Poi MA, H. (2016) Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 16:815–826

    Article  PubMed  Google Scholar 

  • Chen Y, Yang Z, Zhao ZA, Shen Z (2017) Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther 8:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou BK, Mali P, Huang X et al (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529. https://doi.org/10.1038/cr.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cool SK, Geers B, Lentacker I, De Smedt SC, Sanders NN (2013) Enhancing nucleic acid delivery with ultrasound and microbubbles. Methods Mol Biol 948:195–204

    Article  CAS  PubMed  Google Scholar 

  • Delalande A, Bastie C, Pigeon L, Manta S, Lebertre M, Mignet N, Midoux P, Pichon C (2017) Cationic gas-filled microbubbles for ultrasound-based nucleic acids delivery. Biosci Rep 37:1–18

    Article  CAS  Google Scholar 

  • Ebrahimi B (2017) In vivo reprogramming for heart regeneration: a glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol 108:61–72

    Article  CAS  PubMed  Google Scholar 

  • Fu JD, Srivastava D (2015) Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J 79:245–254

    Article  PubMed  Google Scholar 

  • Fu J, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P et al (2013) Direct reprogramming of human fibroblasts toward a C ardiomyocyte-like state. Stem Cell Rep 1:235–247

    Article  CAS  Google Scholar 

  • Gandara C, Affleck V, Stoll EA (2018) Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice. Hum Gene Ther Method 29:1–15

    Article  CAS  Google Scholar 

  • Geis NA, Katus HA, Bekeredjian R (2012) Microbubbles as a vehicle for gene and drug delivery: current clinical implications and future perspectives. Curr Pharm Design 18:2166–2183

    Article  CAS  Google Scholar 

  • Ghiroldi A, Piccoli M, Ciconte G, Pappone C, Anastasia L (2017) Regenerating the human heart: direct reprogramming strategies and their current limitations. Basic Res Cardiol 112:68

    Article  PubMed  CAS  Google Scholar 

  • Gill KP, Denham M (2020) Optimized transgene delivery using third-generation lentiviruses. Curr Protoc Mol Biol 133:e125. https://doi.org/10.1002/cpmb.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodríguez-Pizà I, Vassena R, Raya A et al (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5(4):353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber T, Baruch L, Machluf M (2017) Ultrasound-mediated mesenchymal stem cells transfection as a targeted cancer therapy platform. Sci Rep 7:42046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider KH (2018) Bone marrow cell therapy and cardiac reparability: better cell characterization will enhance clinical success. Regen Med 13(4):457–475. https://doi.org/10.2217/rme-2017-0134

    Article  CAS  PubMed  Google Scholar 

  • Haider KH, Kim HW, Ashraf M (2009) HIF-1α in stem cell preconditioning: mechanistic role of hypoxia related micro-RNAs. J Thor Cardiovasc Surg 138(1):257

    Article  Google Scholar 

  • Haider KH, Idris NM, Kim HW, Ahmed RP, Jinag S, Ashraf M (2010) MicroRNA-21 is a key determinant in IL11/STAT-3 anti-apoptotic signaling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res 88:168–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider KH, Khan M, Sen CK (2015) MicroRNAs with mega functions in cardiac remodeling and repair: the micro management of the matters of the heart. Chapter-22, pp 569–600. https://doi.org/10.1016/B978-0-12-405544-5.00022-8

  • Hara H, Takeda N, Komuro I (2017) Pathophysiology and therapeutic potential of cardiac fibrosis. Inflamm Regener 37:13. https://doi.org/10.1186/s41232-017-0046-5

    Article  CAS  Google Scholar 

  • Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A et al (2017) Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol 69(5):526–537. https://doi.org/10.1016/j.jacc.2016.11.009

    Article  PubMed  Google Scholar 

  • Hashimot H, Zhou HY, Morales MG, Abad M, Bassel-Duby R, Olson EN (2016) Induction of cardiac cell types by direct reprogramming. Circ Res 119:E168

    Google Scholar 

  • He L, Zhou B (2017) Cardiomyocyte proliferation: remove brakes and push accelerators. Cell Res 27:959–960. https://doi.org/10.1038/cr.2017.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, He Q, Yu W, Huang J, Yang M, Chen W, Han W (2021) Optimized protocol for high-titer lentivirus production and transduction of primary fibroblasts. J Basic Microbiol 61(5):430–442. https://doi.org/10.1002/jobm.202100008

    Article  CAS  PubMed  Google Scholar 

  • Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M et al (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311(1):62–73. https://doi.org/10.1001/jama.2013.282909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton BC, Booth C, Thrasher AJ (2015) Lentivirus Technologies for Modulation of the immune system. Curr Opin Pharmacol 24:119–127

    Article  CAS  PubMed  Google Scholar 

  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim AY, Mehdi Q, Abbas AO, Alashkar A, Haider KH (2016) Induced pluripotent stem cells: next generation cells for tissue regeneration. J Biomed Sci Eng 9(4):226–244

    Article  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagawa K, Ieda M (2013) Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 6:37–45

    Article  PubMed  Google Scholar 

  • Isomi M, Sadahiro T, Fujita R, Abe Y, Yamada Y, Akiyama T, Mizukami H (2021) Direct reprogramming with Sendai virus vectors repaired infarct hearts at the chronic stage. Biochem Biophys Res Commun 560:87–92. https://doi.org/10.1016/j.bbrc.2021.04.121

    Article  CAS  PubMed  Google Scholar 

  • Jayawardena TM, Finch EA, Zhang LN, Zhang HT, Hodgkinson CP, Pratt RE, Rosenberg PB et al (2015) MicroRNA induced cardiac reprogramming in vivo evidence for mature cardiac myocytes and improved cardiac function. Circ Res 116:418

    Article  CAS  PubMed  Google Scholar 

  • Kelaini S, Cochrane A, Margariti A (2014) Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning 7:19

    PubMed  PubMed Central  Google Scholar 

  • Kim CK, Haider KH, Lim SJ (2001) Gene medicine: a new field of molecular medicine. Arch Pharm Res 24(1):1–15. https://doi.org/10.1007/BF02976486

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Haider KH, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-107 and miR-210 expression. J Biol Chem 284:33161–33168

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Ashraf M, Jiang S, Haider KH (2012a) Stem cell based delivery of hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of the infarcted heart function. J Mol Med 90(9):997–1010

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Malik F, Durrani S, Ashraf M, Jiang S, Haider KH (2012b) Concomitant activation of mir-107/pdcd10 and hypoxamir-210/casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 17(8):1053–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 17:63–89

    Article  CAS  PubMed  Google Scholar 

  • Kurotsu S, Suzuki T, Ieda M (2017) Direct reprogramming, epigenetics, and cardiac regeneration. J Card Fail 23:552–557

    Article  PubMed  Google Scholar 

  • Lai VK, Ashraf M, Jiang S, Haider KH (2012) MicroRNA-143 is critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/Cyclin D1 signaling. Cell Cycle 11(4):667–677

    Google Scholar 

  • Li H, Zheng XZ, Wang HP, Li F, Wu Y, Du LF (2009) Ultrasound-targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells and rat retina in vivo. Gene Ther 16:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Liao YY, Chen XY, Wang YX, Lin Y, Yang F, Zhou QL (2014) New progress in angiogenesis therapy of cardiovascular disease by ultrasound targeted microbubble destruction. Biomed Res Int 2014:872984

    PubMed  PubMed Central  Google Scholar 

  • Lin Q, Fu Q, Zhang Y, Wang H, Liu Z, Zhou J, Duan C et al (2010) Tumourigenesis in the infarcted rat heart is eliminated through differentiation and enrichment of the transplanted embryonic stem cells. Eur J Heart Fail 12(11):1179–1185. https://doi.org/10.1093/eurjhf/hfq144

    Article  CAS  PubMed  Google Scholar 

  • Lin LZ, Fan Y, Gao F, Jin LF, Li D, Sun WJ, Li F et al (2018) UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics 8:1923–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu KC, Lin BS, Gao AD, Ma HY, Zhao M, Zhang R, Yan HH et al (2014) Integrase-deficient lentivirus: opportunities and challenges for human gene therapy. Curr Gene Ther 14:352–364

    Article  PubMed  CAS  Google Scholar 

  • López-Muneta L, Miranda-Arrubla J, Carvajal-Vergara X (2020) The future of direct cardiac reprogramming: any GMT cocktail variety? Int J Mol Sci 21:7950. https://doi.org/10.3390/ijms21217950

    Article  PubMed Central  Google Scholar 

  • Lukashev AN, Zamyatnin AJ (2016) Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc) 81:700–708

    Article  CAS  Google Scholar 

  • Ma J, Xu CS, Gao F, Chen M, Li F, Du LF (2015) Diagnostic and therapeutic research on ultrasound microbubble/Nanobubble contrast agents. Mol Med Rep 12:4022–4028

    Article  CAS  PubMed  Google Scholar 

  • Macarthur CC, Fontes A, Ravinder N, Kuninger D, Kaur J, Bailey M, Taliana A et al (2012) Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells Int 2012:564612. https://doi.org/10.1155/2012/564612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, Haack-Sørensen M et al (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36(27):1744–1753. https://doi.org/10.1093/eurheartj/ehv136

    Article  CAS  PubMed  Google Scholar 

  • Mathison M, Gersch RP, Nasser A et al (2012) In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc 1(6):e005652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarron A, Donnelley M, McIntyre C, Parsons D (2016) Challenges of up-scaling lentivirus production and processing. J Biotechnol 240:23–30

    Article  CAS  PubMed  Google Scholar 

  • Menasché P, Hagège AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280. https://doi.org/10.1016/S0140-6736(00)03617-5

    Article  PubMed  Google Scholar 

  • Meng Q, Bhandary B, Bhuiyan MS, James J, Osinska H, Valiente-Alandi I, Shay-Winkler K (2018) Myofibroblast-specific TGFβ receptor II signaling in the fibrotic response to cardiac myosin binding protein C-induced cardiomyopathy. Circ Res 123:1285–1297. https://doi.org/10.1161/CIRCRESAHA.118.313089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michen B, Graule T (2010) Isoelectric points of viruses. J Appl Microbiol 109:388–397

    Article  CAS  PubMed  Google Scholar 

  • Milone MC, O’Doherty U (2018) Clinical use of lentiviral vectors. Leukemia 32:1529–1541. https://doi.org/10.1038/s41375-018-0106-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, Xiao YF (2002) Transplantation of embryonic stem cells improves cardiac function in post-infarcted rats. J Appl Physiol 92(1):288–296. https://doi.org/10.1152/jappl.2002.92.1.288

    Article  PubMed  Google Scholar 

  • Miyamoto K, Akiyama M, Tamura F, Isomi M, Yamakawa H, Sadahiro T, Muraoka N et al (2018) Direct in vivo reprogramming with Sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell 22(1):91–103.e5. https://doi.org/10.1016/j.stem.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  • Mohamed T, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, Ang YS et al (2017) Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation 135:978

    Article  CAS  PubMed  Google Scholar 

  • Mollova M, Bersell K, Walsha S, Savla J, Das LT, Park S-Y, Silberstein LE et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. PNAS 110(4):1446–1451. https://doi.org/10.1073/pnas.1214608110

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, Murray C et al (2014) The global burden of ischemic heart disease in 1990 and 2010. Circulation 129:1493–1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller OJ, Schinkel S, Kleinschmidt JA, Katus HA, Bekeredjian R (2008) Augmentation of AAV-mediated cardiac gene transfer after systemic Administration in Adult Rats. Gene Ther 15:1558–1565

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju CK, Dries E, Gilbert G, Abdesselem M, Wang N, Amoni M, Driesen RJ et al (2019) Myofibroblast modulation of cardiac myocyte structure and function. Sci Rep 9:8879. https://doi.org/10.1038/s41598-019-45078-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106. https://doi.org/10.1038/nbt1374. Epub 2007 Nov 30. PMID: 18059259

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. PNAS 107(32):14152–14157. https://doi.org/10.1073/pnas.1009374107

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam YJ, Lubczyk J, Bhakta C, Zang M, Fernandez-Perez T, McAnally A, Bassel-Duby J et al (2014) Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development 141:4267–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negishi Y, Endo-Takahashi Y, Maruyama K (2016) Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug Discov Ther 10:248–255

    Article  CAS  PubMed  Google Scholar 

  • Nelson TJ, Ge ZD, Van Orman J, Barron M, Rudy-Reil D, Hacker TA, Misra R et al (2006) Improved cardiac function in infarcted mice after treatment with pluripotent embryonic stem cells. Anat Rec A Discov Mol Cell Evol Biol 288(11):1216–1224. https://doi.org/10.1002/ar.a.20388

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni XW, Ye JM, Wang LP, Xu SL, Zou CP, Yang Y, Liu Z (2016) Advanced microbubbles as a multifunctional platform combining imaging and therapy. Appl Sci-Basel 6:365

    Article  CAS  Google Scholar 

  • Panje CM, Wang DS, Pysz MA, Paulmurugan R, Ren Y, Tranquart F, Tian L et al (2012) Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: effect of DNA and microbubble dose on in vivo transfection efficiency. Theranostics 2:1078–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska D, Chiono V (2020) MicroRNA-mediated direct reprogramming of human adult fibroblasts toward cardiac phenotype. Front Bioeng Biotechnol 8:529. https://doi.org/10.3389/fbioe.2020.00529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasha Z, Haider HK, Ashraf M (2011) Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells. PLoS One 6(8):e23667. https://doi.org/10.1371/journal.pone.0023667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U (2012) A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol 53(3):323–332

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598. https://doi.org/10.1038/nature11044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, Yao J, Xu D (2018) The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 10:1099–1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu X, Liu T, Song K, Li X, Ge D (2012) Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. PLoS One 7(10):e48161. https://doi.org/10.1371/journal.pone.0048161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson DS (2016) Origin and activities of human lentivirus particles. Biomed Pharmacother 83:1311–1314

    Article  CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Haider KH, Heng BC, Tian XF, Lei Y, Ge R, Cao T (2007) Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing VEGF165 gene. J Gene Med 9(6):452–461

    Article  CAS  PubMed  Google Scholar 

  • Rufaihah AJ, Haider KH, Heng BC, Ye L, Tan RS, Toh WS, Tian XF et al (2010) Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen Med 5:231–244

    Article  CAS  PubMed  Google Scholar 

  • Sadahiro T, Yamanaka S, Ieda M (2015) Direct cardiac reprogramming progress and challenges in basic biology and clinical applications. Circ Res 116:1378–1391

    Article  CAS  PubMed  Google Scholar 

  • Santucci A, Riccini C, Cavallini C (2020) Treatment of stable ischaemic heart disease: the old and the new. Eur Heart J (Suppl) 22(Suppl E):E54–E59. https://doi.org/10.1093/eurheartj/suaa060

    Article  CAS  Google Scholar 

  • Shahid MS, Lasheen W, Haider KH (2016) Modest outcome of clinical trials with bone marrow cells for myocardial repair: is the autologous source of cells the prime culprit? J Thorac Dis 8(10):E1371–E1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Shakirova KM, Ovchinnikova VY, Dashinimaev EB (2020) Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front Bioeng Biotechnol 8:882. https://doi.org/10.3389/fbioe.2020.00882

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro G, Wong AW, Bez M, Yang F, Tam S, Even L, Sheyn D (2016) Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 223:157–164

    Article  CAS  PubMed  Google Scholar 

  • Sharon D, Kamen A (2018) Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 115:25–40

    Article  CAS  PubMed  Google Scholar 

  • Shearer RF, Saunders DN (2015) Experimental design for stable genetic manipulation in mammalian cell lines: lentivirus and alternatives. Genes Cells 20:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sinagra G, Fabris E (2016) Direct cellular reprogramming: the hopes and the hurdles. Eur J Heart Fail 18:157–159

    Article  PubMed  Google Scholar 

  • Sirsi SR, Borden MA (2012) Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2:1208–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song KH, Nam YJ, Luo X, Qi XX, Tan W, Huang GN, Acharya A et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stellberger T, Koehler N, Dinkelmeier A, Draxler J, Haase M, Hellinckx J, Pavlovic M et al (2017) Strategies and methods for the detection and identification of viral vectors. Virus Genes 53:749–757

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Huang C, Wu J, Chen K, Li S, Weisel RD, Rakowski H et al (2013) The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 34:2107–2116

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Oda Y, Utoguchi N, Maruyama K (2011) Progress in the development of ultrasound-mediated gene delivery systems utilizing nano and microbubbles. J Control Release 149:36–41

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tani H, Sadahiro T, Ieda M (2018) Direct cardiac reprogramming: a novel approach for heart regeneration. Int J Mol Sci 19:2629

    Article  PubMed Central  CAS  Google Scholar 

  • van Laake LW, Passier R, Doevendans PA, Mummery CL (2008) Human embryonic stem cell–derived cardiomyocytes and cardiac repair in rodents. Circulation Res 102:1008–1010. https://doi.org/10.1161/CIRCRESAHA.108.175505

    Article  CAS  PubMed  Google Scholar 

  • Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP et al (2021) Heart disease and stroke statistics – 2021 update. A report from the American Heart Association. Circulation 143:e254–e743. https://doi.org/10.1161/CIR.0000000000000950

    Article  PubMed  Google Scholar 

  • Von Dossow V, Costa J, D’Ovidio F, Marczin N (2017) Worldwide trends in heart and lung transplantation: guarding the most precious gift ever. Best Pract Res Clin Anaesthesiol 31:141–152

    Article  Google Scholar 

  • Wang H, Yang Y, Liu J, Qian L (2021) Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 22(6):410–424. https://doi.org/10.1038/s41580-021-00335-z

    Article  CAS  PubMed  Google Scholar 

  • White M, Whittaker R, Gandara C, Stoll EA (2017) A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum Gene Ther Method 28:163–176

    Article  CAS  Google Scholar 

  • Woltjen K, Stanford WL (2009) Inhibition of Tgf-β signaling improves mouse fibroblast reprogramming. Cell Stem Cell 5(5):457–458

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Li RK (2017) Ultrasound-targeted microbubble destruction in gene therapy: a new tool to cure human diseases. Gene Dis 4:64–74

    Article  Google Scholar 

  • Xie W, Liu S, Su H, Wang Z, Zheng Y, Fu Y (2010) Ultrasound microbubbles enhance recombinant adeno-associated virus vector delivery to retinal ganglion cells in vivo. Acad Radiol 17:1242–1248

    Article  PubMed  Google Scholar 

  • Yang H, Xiong X, Zhang L, Wu C, Liu Y (2011) Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow. Int J Nanomedicine 6:2043–2051. https://doi.org/10.2147/IJN.S24808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Li Y, Liufu C, Wang Y, Chen Z (2018) Preparation of cationic lipid-coated ultrasound contrast agents and noninvasive gene transfection via ultrasound-targeted microbubble destruction. Curr Pharm Des 24(30):3587–3595. https://doi.org/10.2174/1381612824666181011120031

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Sun ZX, Ren PP, You MJ, Zhang J, Fang LY, Wang J et al (2017) Localized delivery of shRNA against PHD2 protects the heart from acute myocardial infarction through ultrasound-targeted cationic microbubble destruction. Theranostics 7:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang NS, Yan F, Liang XL, Wu MX, Shen YY, Chen M, Xu YX et al (2018) Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved parkinson’s disease therapy. Theranostics 8:2264–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Pettigrew GJ, Thomas J, Vandenberg JI, Delriviere L, Bolton EM, Carmichael A (2002) Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 97(5):348–358. https://doi.org/10.1007/s00395-002-0360-0

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Deng Q, Hu B, Wang YJ, Chen JL, Cui JJ, Cao S et al (2017) Ultrasound combined with targeted cationic microbubble-mediated angiogenesis gene transfection improves ischemic heart function. Exp Ther Med 13:2293–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfa Guo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, D., Haider, K.H., Guo, C. (2022). Bioengineering Technique Progress of Direct Cardiac Reprogramming. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics