Skip to main content

An Introduction to Piezoelectric and Thermoelectric Materials

  • Living reference work entry
  • First Online:
Handbook of Energy Materials
  • 59 Accesses

Abstract

Materials may demonstrate electromagnetism and thermomechanics coupling. Although we benefit from this coupling in our modern lives, comprehending this coupling is challenging. We intuitively understand that temperature increase causes an expansion in polymers and alloys. Typical example is a plastic water bottle left in the sun, the expansion is visible by naked eyes. Yet it is more abstract to consider that an electric field may create a deformation or even a temperature change. Electromagnetic fields are more abstract since our senses fail to be sensitive to these physical quantities. There are indeed materials with so-called piezoelectric and pyroelectric properties and we use them for sensors and actuators. More confusingly, there is a thermoelectric effect relating electric current and heat flux. In order to set the ideas correctly, we explain these phenomena and introduce to the abstract world of electromagnetism and thermomechanics coupling. Furthermore, we provide an inside look to realize how different types of thermal and electric coupling phenomena work and how to model such materials adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • B.E. Abali Thermodynamically Compatible Modeling, Determination of Material Parameters, and Numerical Analysis of Nonlinear Rheological Materials. Doctoral thesis, Technische Universität Berlin, epubli, 2014

    Google Scholar 

  • B.E. Abali, Computational Reality, Advanced Structured Materials, vol 55 (Springer Nature, Singapore, 2017)

    Google Scholar 

  • B. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963). https://doi.org/10.1007/BF01262690

    Article  Google Scholar 

  • S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover Publications, New York, 1984)

    Google Scholar 

  • C. Eckart, The thermodynamics of irreversible processes. I. The Simple Fluid. Phys. Rev. 58, 267–269 (1940a). https://doi.org/10.1103/PhysRev.58.267

    Article  CAS  Google Scholar 

  • C. Eckart, The thermodynamics of irreversible processes. II. Fluid Mixtures. Phys. Rev. 58(3), 269 (1940b)

    Article  CAS  Google Scholar 

  • C. Eckart, The Thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. 58(10), 919 (1940c)

    Article  CAS  Google Scholar 

  • J. Erhart, Experiments to demonstrate piezoelectric and pyroelectric effects. Phys. Educ. 48(4), 438 (2013)

    Article  Google Scholar 

  • D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics revisited (1988-98). Rep. Prog. Phys. 62(7), 1035 (1999)

    Article  CAS  Google Scholar 

  • A.H. Meitzler, H.F. Tiersten, A.W. Warner, D. Berlincourt, G.A. Couqin, F.S. Welsh III, IEEE Standard on Piezoelectricity (IEEE Society, 1988)

    Google Scholar 

  • I. Müller, Thermodynamik (Bertelsmann-Universitätsverlag, 1973)

    Google Scholar 

  • I. Müller, W.H. Müller, Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo (Springer Science & Business Media, Berlin, 2009)

    Google Scholar 

  • I. Müller, T. Ruggeri, Extended Thermodynamics (Springer, 1993)

    Book  Google Scholar 

  • D. Nelson, M. Lax, Theory of the photoelastic interaction. Phys. Rev. B 3(8), 2778 (1971)

    Article  Google Scholar 

  • J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1967)

    Google Scholar 

  • J.C.A. Peltier, Nouvelles expériences sur la caloricité des courans électriques. Ann. Chim. Phys. 56, 371–386 (1834)

    Google Scholar 

  • P.M. Roget, Treatises on Electricity, Galvanism, Magnetism, and Electro-Magnetism (Baldwin and Cradock, London, 1832)

    Google Scholar 

  • T.J. Seebeck, Magnetische polarisation der metalle und erze durch temperatur-differenz, vol 70 (W. Engelmann, Leipzig, 1895)

    Google Scholar 

  • W. Thomson, On a mechanical theory of thermo-electric currents. Proc. R. Soc. Edinb 3, 91–98 (1857)

    Article  Google Scholar 

  • C. Truesdell, R.A. Toupin, Encyclopedia of Physics, Principles of Classical Mechanics and Field Theory, vol III/1 (Springer, Berlin/Göttingen/Heidelberg, 1960), pp. 226–790

    Google Scholar 

  • W. Voigt, Lehrbuch der kristallphysik (Teubner, Leipzig, 1928)

    Google Scholar 

  • G. Heckmann, Die Gittertheorie der festen Körper. Ergebnisse der exakten Naturwissenschaften 100–153 (1925)

    Google Scholar 

  • W.G. Cady, Piezoelectricity: An Introduction to the Theory and Applications of Electomechanical Phenomena in Crystals (Dover, New York, 1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilen Emek Abali .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abali, B.E. (2022). An Introduction to Piezoelectric and Thermoelectric Materials. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics