Handbook of Energy Materials pp 1-26 | Cite as
Fundamentals and Recent Advancements in Li-Ion Batteries
- 23 Downloads
Abstract
In the last 10 years, lithium-ion batteries have been applied to a variety of electronic devices. In recent years, electronic equipment has been rapidly developed to meet high-performance requirements, thus opening new markets. However, due to the low theoretical energy density of existing commercial electrode materials, lithium-ion batteries have limited applications. Therefore, many researchers explore different methods to improve the performance of the battery to adapt to the needs of practical applications. This chapter describes the research work related to the development of lithium-ion batteries, which has shown excellent performance in electrochemical tests. More importantly, the evaluation and testing methods of full batteries are critical to the development of new electrode materials for practical applications, which will also help meet the growing demand for high-performance lithium-ion batteries in emerging markets. The purpose of this chapter is to organize relevant information about new electrode materials and advanced nanotechnology to promote the development of lithium-ion batteries. In addition, it also outlines the challenges encountered in the research of high-performance batteries and the prospects of the next generation of lithium-ion batteries.
Keywords
Lithium-ion battery Cathode Anode Electrolyte SeparatorReferences
- A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862–865 (2005)CrossRefGoogle Scholar
- J.C. Barbosa, R. Gonçalves, C.M. Costa, S.L. Mendez, Recent advances on materials for lithium-ion batteries. Energies 14, 3145 (2021)CrossRefGoogle Scholar
- C. Chae, H.J. Noh, J.K. Lee, B. Scrosati, Y.K. Sun, A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 24, 3036–3042 (2014)CrossRefGoogle Scholar
- S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59, 110–135 (2020)CrossRefGoogle Scholar
- M. Chen, D. Chen, Y. Liao, X. Zhong, W. Li, Y. Zhang, Layered lithium-rich oxide nanoparticles doped with spinel phase: Acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl. Mater. Interfaces 8, 4575–4584 (2016)CrossRefGoogle Scholar
- J. Cho, Y.J. Kim, T.J. Kim, B. Park, Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem. Int. Ed. 40, 3367–3369 (2001)CrossRefGoogle Scholar
- J. Cho, Y.W. Kim, B. Kim, J.G. Lee, B. Park, A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem. Int. Ed. 42, 1618–1621 (2003)CrossRefGoogle Scholar
- Y. Cho, P. Oh, J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer. Nano Lett. 13, 1145–1152 (2013)CrossRefGoogle Scholar
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRefGoogle Scholar
- J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRefGoogle Scholar
- J. Ding, T. Tian, Q. Meng, Z. Guo, W. Li, P. Zhang, F.T. Ciacchi, J. Huang, W. Yang, Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 3, 2485 (2013)CrossRefGoogle Scholar
- B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015)CrossRefGoogle Scholar
- X.L. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C.Y. Yang, S.C. Liou, K. Amine, K. Xu, C.S. Wang, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018)CrossRefGoogle Scholar
- A. Granzow, Flame retardation by phosphorus compounds. Acc. Chem. Res. 11, 177–183 (1978)CrossRefGoogle Scholar
- P.Y. Guan, L. Zhou, Z.L. Yu, Y.D. Sun, Y.J. Liu, F.X. Wu, Y.F. Jiang, D.W. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, journal of energy. Chemistry 43, 220–235 (2020)Google Scholar
- K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)CrossRefGoogle Scholar
- S.K. Heiskanen, J.J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule. 3, 2322–2333 (2019)CrossRefGoogle Scholar
- J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H.Y. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)CrossRefGoogle Scholar
- S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S.X. Dou, Z. Guo, J. Cho, Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 7, 1601507 (2017)CrossRefGoogle Scholar
- H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, J. Cho, A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 15, 2111–2119 (2015)CrossRefGoogle Scholar
- J.I. Lee, E.H. Lee, J.H. Park, S. Park, S.Y. Lee, Ultrahigh-energy-density lithium-ion batteries based on a high-capacity anode and a high-voltage cathode with an electroconductive nanoparticle shell. Adv. Energy Mater. 4, 1301542 (2014)CrossRefGoogle Scholar
- J.H. Lee, C.S. Yoon, J.Y. Hwang, S.J. Kim, F. Maglia, P. Lamp, S.T. Myungd, Y.K. Sun, High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016)CrossRefGoogle Scholar
- F. Li, R. Tao, X.Y. Tan, J.H. Xu, D.J. Kong, L. Shen, R.W. Mo, J.L. Li, Y.F. Lu, Graphite-embedded lithium iron phosphate for high-power-energy cathodes. Nano Lett. 21, 2572–2579 (2021)CrossRefGoogle Scholar
- D. Lin, D. Zhuo, Y. Liu, Y. Cui, All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138, 11044–11050 (2016)CrossRefGoogle Scholar
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)CrossRefGoogle Scholar
- N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012)CrossRefGoogle Scholar
- N. Liu, Z.D. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)CrossRefGoogle Scholar
- Y.H. Liu, T. Takasaki, K. Nishimura, M. Yanagida, T. Sakai, Development of lithium ion battery using fiber-type lithium-rich cathode and carbon anode materials. J. Power Sources 290, 153–158 (2015)CrossRefGoogle Scholar
- X. Lu, L. Gu, Y.S. Hu, H.C. Chiu, H. Li, G.P. Demopoulos, L.Q. Chen, New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. J. Am. Chem. Soc. 137, 1581–1586 (2015)CrossRefGoogle Scholar
- Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972–996 (2018)CrossRefGoogle Scholar
- W. Luo, S.L. Cheng, M. Wu, X.H. Zhang, D. Yang, X.L. Rui, A review of advanced separators for rechargeable batteries. J. Power Sources 509, 230372 (2021)CrossRefGoogle Scholar
- A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020)CrossRefGoogle Scholar
- M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013)CrossRefGoogle Scholar
- K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0 < x < −1): A new cathode material for batteries of highenergy density. Mater. Res. Bull. 15, 783–789 (1980)CrossRefGoogle Scholar
- R.W. Mo, F. Li, X.Y. Tan, P.C. Xu, R. Tao, G.R. Shen, X. Lu, F. Liu, L. Shen, B. Xu, Q.F. Xiao, X. Wang, C.M. Wang, J.L. Li, G. Wang, Y.F. Lu, High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat. Commun. 10, 1474 (2019)CrossRefGoogle Scholar
- J. Mun, J.H. Park, W. Choi, A. Benayad, J.H. Park, J.M. Lee, S.G. Doo, S.M. Oh, New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J. Mater. Chem. A 2, 19670–19677 (2014)CrossRefGoogle Scholar
- Y. Nishi, The development of lithium ion secondary batteries. Chem. Rec. 1, 406–413 (2001)CrossRefGoogle Scholar
- M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014)CrossRefGoogle Scholar
- P. Oh, M. Ko, S. Myeong, Y. Kim, J. Cho, A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4 Li2MnO3–0.6 LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater. 4, 1400631 (2014)CrossRefGoogle Scholar
- P. Oh, S.M. Oh, W. Li, S. Myeong, J. Cho, A. Manthiram, High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv. Sci. 3, 1600184 (2016)CrossRefGoogle Scholar
- K. Park, D. Yeon, J.H. Kim, J.-H. Park, S. Doo, B. Choi, Spinel-embedded lithium-rich oxide composites for Li-ion batteries. J. Power Sources 360, 453–459 (2017)CrossRefGoogle Scholar
- J. Pires, A. Castets, L. Timperman, J. Santos-Peña, E. Dumont, S. Levasseur, C. Tessier, R. Dedryvère, M. Anouti, Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J. Power Sources 296, 413–425 (2015)CrossRefGoogle Scholar
- Y.P. Ren, X.Y. Zhou, J.J. Tang, J. Ding, S. Chen, J.M. Zhang, T.J. Hu, X.S. Yang, X.M. Wang, J. Yang, Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode. Inorg. Chem. 58, 4592–4599 (2019)CrossRefGoogle Scholar
- Y.K. Sun, Z.H. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012)CrossRefGoogle Scholar
- L.M. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X.L. Fan, C. Luo, C.S. Wang, K. Xu, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015)CrossRefGoogle Scholar
- L. Taberna, S. Mitra, P. Poizot, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)CrossRefGoogle Scholar
- K. Takada, Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013)CrossRefGoogle Scholar
- H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010)CrossRefGoogle Scholar
- C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z.N. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013)CrossRefGoogle Scholar
- J.H. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018)CrossRefGoogle Scholar
- S.T. Wang, Y. Yang, Y.H. Dong, Z.T. Zhang, Z.L. Tang, Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 8, 1–18 (2019a)CrossRefGoogle Scholar
- T. Wang, R.V. Salvatierra, J.M. Tour, Detecting Li dendrites in a two-electrode battery system. Adv. Mater. 31, 1807405 (2019b)CrossRefGoogle Scholar
- M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976)CrossRefGoogle Scholar
- D.H.C. Wong, J.L. Thelen, Y.B. Fu, D. Devaux, A.A. Pandya, V.S. Battaglia, N.P. Balsara, J.M. DeSimone, Nonflammable perfluoropolyether-based electrolytes for lithium batteries. PNAS 111, 3327–3331 (2014)CrossRefGoogle Scholar
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012)CrossRefGoogle Scholar
- H. Wu, D. Zhuo, D. Kong, Y. Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014)CrossRefGoogle Scholar
- F.X. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020a)CrossRefGoogle Scholar
- F. Wu, K. Zhang, Y. Liu, H. Gao, Y. Bai, X. Wang, C. Wu, Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater. 33, 26–54 (2020b)CrossRefGoogle Scholar
- L. Xia, Y. Xia, Z. Liu, A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. J. Power Sources 278, 190–196 (2015)CrossRefGoogle Scholar
- C.K. Yang, A metallic graphene layer adsorbed with lithium. Appl. Phys. Lett. 94, 163115 (2009)CrossRefGoogle Scholar
- C.Y. Yang, J. Chen, T.T. Qing, X.L. Fan, W. Sun, A.V. Cresce, M.S. Ding, O. Borodin, J. Vatamanu, M.A. Schroeder, N. Eidson, C.S. Wang, K. Xu, 4.0 V Aqueous Li-ion batteries. Joule. 1, 122–132 (2017)CrossRefGoogle Scholar
- H. Yang, W.R. Leow, X.D. Chen, Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, 1704347 (2018)CrossRefGoogle Scholar
- Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, Y.H. He, On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Mater. 36, 186–212 (2021)CrossRefGoogle Scholar
- Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L.B. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)CrossRefGoogle Scholar
- E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRefGoogle Scholar
- H.W. Zhang, L. Zhou, O. Noonan, D.J. Martin, A.K. Whittaker, C.Z. Yu, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24, 4337–4342 (2014)CrossRefGoogle Scholar
- H.L. Zhang, H.B. Zhao, M.A. Khan, W.W. Zou, J.Q. Xu, L. Zhang, J.J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 6, 20564–20620 (2018)CrossRefGoogle Scholar
- J. Zheng, M. Gu, A. Genc, J. Xiao, P. Xu, X. Chen, Z. Zhu, W. Zhao, L. Pullan, C. Wang, J.G. Zhang, Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 14, 2628 (2014a)CrossRefGoogle Scholar
- G.Y. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H.B. Yao, H.T. Wang, W.Y. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014b)CrossRefGoogle Scholar
- L.J. Zhou, Z.F. Hou, L.M. Wu, First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116, 21780–21787 (2012)CrossRefGoogle Scholar