Skip to main content

Fundamentals and Recent Advancements in Li-Ion Batteries

  • Living reference work entry
  • First Online:
Handbook of Energy Materials
  • 99 Accesses

Abstract

In the last 10 years, lithium-ion batteries have been applied to a variety of electronic devices. In recent years, electronic equipment has been rapidly developed to meet high-performance requirements, thus opening new markets. However, due to the low theoretical energy density of existing commercial electrode materials, lithium-ion batteries have limited applications. Therefore, many researchers explore different methods to improve the performance of the battery to adapt to the needs of practical applications. This chapter describes the research work related to the development of lithium-ion batteries, which has shown excellent performance in electrochemical tests. More importantly, the evaluation and testing methods of full batteries are critical to the development of new electrode materials for practical applications, which will also help meet the growing demand for high-performance lithium-ion batteries in emerging markets. The purpose of this chapter is to organize relevant information about new electrode materials and advanced nanotechnology to promote the development of lithium-ion batteries. In addition, it also outlines the challenges encountered in the research of high-performance batteries and the prospects of the next generation of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862–865 (2005)

    Article  CAS  Google Scholar 

  • J.C. Barbosa, R. Gonçalves, C.M. Costa, S.L. Mendez, Recent advances on materials for lithium-ion batteries. Energies 14, 3145 (2021)

    Article  CAS  Google Scholar 

  • C. Chae, H.J. Noh, J.K. Lee, B. Scrosati, Y.K. Sun, A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 24, 3036–3042 (2014)

    Article  CAS  Google Scholar 

  • S. Chae, S.H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59, 110–135 (2020)

    Article  CAS  Google Scholar 

  • M. Chen, D. Chen, Y. Liao, X. Zhong, W. Li, Y. Zhang, Layered lithium-rich oxide nanoparticles doped with spinel phase: Acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl. Mater. Interfaces 8, 4575–4584 (2016)

    Article  CAS  Google Scholar 

  • J. Cho, Y.J. Kim, T.J. Kim, B. Park, Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem. Int. Ed. 40, 3367–3369 (2001)

    Article  CAS  Google Scholar 

  • J. Cho, Y.W. Kim, B. Kim, J.G. Lee, B. Park, A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem. Int. Ed. 42, 1618–1621 (2003)

    Article  CAS  Google Scholar 

  • Y. Cho, P. Oh, J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer. Nano Lett. 13, 1145–1152 (2013)

    Article  CAS  Google Scholar 

  • J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)

    Article  CAS  Google Scholar 

  • J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)

    Article  CAS  Google Scholar 

  • J. Ding, T. Tian, Q. Meng, Z. Guo, W. Li, P. Zhang, F.T. Ciacchi, J. Huang, W. Yang, Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection. Sci. Rep. 3, 2485 (2013)

    Article  CAS  Google Scholar 

  • B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015)

    Article  Google Scholar 

  • X.L. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C.Y. Yang, S.C. Liou, K. Amine, K. Xu, C.S. Wang, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018)

    Article  CAS  Google Scholar 

  • A. Granzow, Flame retardation by phosphorus compounds. Acc. Chem. Res. 11, 177–183 (1978)

    Article  CAS  Google Scholar 

  • P.Y. Guan, L. Zhou, Z.L. Yu, Y.D. Sun, Y.J. Liu, F.X. Wu, Y.F. Jiang, D.W. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, journal of energy. Chemistry 43, 220–235 (2020)

    Google Scholar 

  • K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)

    Article  CAS  Google Scholar 

  • S.K. Heiskanen, J.J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule. 3, 2322–2333 (2019)

    Article  CAS  Google Scholar 

  • J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H.Y. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010)

    Article  CAS  Google Scholar 

  • S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S.X. Dou, Z. Guo, J. Cho, Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 7, 1601507 (2017)

    Article  CAS  Google Scholar 

  • H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, J. Cho, A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 15, 2111–2119 (2015)

    Article  CAS  Google Scholar 

  • J.I. Lee, E.H. Lee, J.H. Park, S. Park, S.Y. Lee, Ultrahigh-energy-density lithium-ion batteries based on a high-capacity anode and a high-voltage cathode with an electroconductive nanoparticle shell. Adv. Energy Mater. 4, 1301542 (2014)

    Article  CAS  Google Scholar 

  • J.H. Lee, C.S. Yoon, J.Y. Hwang, S.J. Kim, F. Maglia, P. Lamp, S.T. Myungd, Y.K. Sun, High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016)

    Article  CAS  Google Scholar 

  • F. Li, R. Tao, X.Y. Tan, J.H. Xu, D.J. Kong, L. Shen, R.W. Mo, J.L. Li, Y.F. Lu, Graphite-embedded lithium iron phosphate for high-power-energy cathodes. Nano Lett. 21, 2572–2579 (2021)

    Article  CAS  Google Scholar 

  • D. Lin, D. Zhuo, Y. Liu, Y. Cui, All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138, 11044–11050 (2016)

    Article  CAS  Google Scholar 

  • D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  Google Scholar 

  • N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012)

    Article  CAS  Google Scholar 

  • N. Liu, Z.D. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W.T. Zhao, Y. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014)

    Article  CAS  Google Scholar 

  • Y.H. Liu, T. Takasaki, K. Nishimura, M. Yanagida, T. Sakai, Development of lithium ion battery using fiber-type lithium-rich cathode and carbon anode materials. J. Power Sources 290, 153–158 (2015)

    Article  CAS  Google Scholar 

  • X. Lu, L. Gu, Y.S. Hu, H.C. Chiu, H. Li, G.P. Demopoulos, L.Q. Chen, New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. J. Am. Chem. Soc. 137, 1581–1586 (2015)

    Article  CAS  Google Scholar 

  • Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972–996 (2018)

    Article  CAS  Google Scholar 

  • W. Luo, S.L. Cheng, M. Wu, X.H. Zhang, D. Yang, X.L. Rui, A review of advanced separators for rechargeable batteries. J. Power Sources 509, 230372 (2021)

    Article  CAS  Google Scholar 

  • A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020)

    Article  CAS  Google Scholar 

  • M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013)

    Article  CAS  Google Scholar 

  • K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0 < x < −1): A new cathode material for batteries of highenergy density. Mater. Res. Bull. 15, 783–789 (1980)

    Article  CAS  Google Scholar 

  • R.W. Mo, F. Li, X.Y. Tan, P.C. Xu, R. Tao, G.R. Shen, X. Lu, F. Liu, L. Shen, B. Xu, Q.F. Xiao, X. Wang, C.M. Wang, J.L. Li, G. Wang, Y.F. Lu, High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nat. Commun. 10, 1474 (2019)

    Article  CAS  Google Scholar 

  • J. Mun, J.H. Park, W. Choi, A. Benayad, J.H. Park, J.M. Lee, S.G. Doo, S.M. Oh, New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J. Mater. Chem. A 2, 19670–19677 (2014)

    Article  CAS  Google Scholar 

  • Y. Nishi, The development of lithium ion secondary batteries. Chem. Rec. 1, 406–413 (2001)

    Article  CAS  Google Scholar 

  • M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014)

    Article  CAS  Google Scholar 

  • P. Oh, M. Ko, S. Myeong, Y. Kim, J. Cho, A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4 Li2MnO3–0.6 LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater. 4, 1400631 (2014)

    Article  CAS  Google Scholar 

  • P. Oh, S.M. Oh, W. Li, S. Myeong, J. Cho, A. Manthiram, High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv. Sci. 3, 1600184 (2016)

    Article  CAS  Google Scholar 

  • K. Park, D. Yeon, J.H. Kim, J.-H. Park, S. Doo, B. Choi, Spinel-embedded lithium-rich oxide composites for Li-ion batteries. J. Power Sources 360, 453–459 (2017)

    Article  CAS  Google Scholar 

  • J. Pires, A. Castets, L. Timperman, J. Santos-Peña, E. Dumont, S. Levasseur, C. Tessier, R. Dedryvère, M. Anouti, Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J. Power Sources 296, 413–425 (2015)

    Article  CAS  Google Scholar 

  • Y.P. Ren, X.Y. Zhou, J.J. Tang, J. Ding, S. Chen, J.M. Zhang, T.J. Hu, X.S. Yang, X.M. Wang, J. Yang, Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode. Inorg. Chem. 58, 4592–4599 (2019)

    Article  CAS  Google Scholar 

  • Y.K. Sun, Z.H. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012)

    Article  CAS  Google Scholar 

  • L.M. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X.L. Fan, C. Luo, C.S. Wang, K. Xu, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015)

    Article  CAS  Google Scholar 

  • L. Taberna, S. Mitra, P. Poizot, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)

    Article  CAS  Google Scholar 

  • K. Takada, Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013)

    Article  CAS  Google Scholar 

  • H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010)

    Article  CAS  Google Scholar 

  • C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z.N. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013)

    Article  CAS  Google Scholar 

  • J.H. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018)

    Article  CAS  Google Scholar 

  • S.T. Wang, Y. Yang, Y.H. Dong, Z.T. Zhang, Z.L. Tang, Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 8, 1–18 (2019a)

    Article  CAS  Google Scholar 

  • T. Wang, R.V. Salvatierra, J.M. Tour, Detecting Li dendrites in a two-electrode battery system. Adv. Mater. 31, 1807405 (2019b)

    Article  CAS  Google Scholar 

  • M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976)

    Article  CAS  Google Scholar 

  • D.H.C. Wong, J.L. Thelen, Y.B. Fu, D. Devaux, A.A. Pandya, V.S. Battaglia, N.P. Balsara, J.M. DeSimone, Nonflammable perfluoropolyether-based electrolytes for lithium batteries. PNAS 111, 3327–3331 (2014)

    Article  CAS  Google Scholar 

  • H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.L. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012)

    Article  CAS  Google Scholar 

  • H. Wu, D. Zhuo, D. Kong, Y. Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014)

    Article  CAS  Google Scholar 

  • F.X. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020a)

    Article  CAS  Google Scholar 

  • F. Wu, K. Zhang, Y. Liu, H. Gao, Y. Bai, X. Wang, C. Wu, Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater. 33, 26–54 (2020b)

    Article  Google Scholar 

  • L. Xia, Y. Xia, Z. Liu, A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. J. Power Sources 278, 190–196 (2015)

    Article  CAS  Google Scholar 

  • C.K. Yang, A metallic graphene layer adsorbed with lithium. Appl. Phys. Lett. 94, 163115 (2009)

    Article  CAS  Google Scholar 

  • C.Y. Yang, J. Chen, T.T. Qing, X.L. Fan, W. Sun, A.V. Cresce, M.S. Ding, O. Borodin, J. Vatamanu, M.A. Schroeder, N. Eidson, C.S. Wang, K. Xu, 4.0 V Aqueous Li-ion batteries. Joule. 1, 122–132 (2017)

    Article  CAS  Google Scholar 

  • H. Yang, W.R. Leow, X.D. Chen, Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, 1704347 (2018)

    Article  CAS  Google Scholar 

  • Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, Y.H. He, On the sustainability of lithium ion battery industry – A review and perspective. Energy Storage Mater. 36, 186–212 (2021)

    Article  Google Scholar 

  • Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L.B. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011)

    Article  CAS  Google Scholar 

  • E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)

    Article  CAS  Google Scholar 

  • H.W. Zhang, L. Zhou, O. Noonan, D.J. Martin, A.K. Whittaker, C.Z. Yu, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage. Adv. Funct. Mater. 24, 4337–4342 (2014)

    Article  CAS  Google Scholar 

  • H.L. Zhang, H.B. Zhao, M.A. Khan, W.W. Zou, J.Q. Xu, L. Zhang, J.J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 6, 20564–20620 (2018)

    Article  CAS  Google Scholar 

  • J. Zheng, M. Gu, A. Genc, J. Xiao, P. Xu, X. Chen, Z. Zhu, W. Zhao, L. Pullan, C. Wang, J.G. Zhang, Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 14, 2628 (2014a)

    Article  CAS  Google Scholar 

  • G.Y. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H.B. Yao, H.T. Wang, W.Y. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014b)

    Article  CAS  Google Scholar 

  • L.J. Zhou, Z.F. Hou, L.M. Wu, First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 116, 21780–21787 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runwei Mo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mo, R. (2022). Fundamentals and Recent Advancements in Li-Ion Batteries. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics