Skip to main content

Research and Development for Third-Generation Gravitational Wave Detectors

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Gravitational wave astronomy is a new and exciting field but has a long history as well as a bright future. The first detections of gravitational waves were from instruments of the second generation of detectors – the first generation of kilometer-scale ground based detectors operated as planned, but did not conclusively observe gravitational waves. The second-generation detectors (Advanced LIGO and Advanced Virgo) opened the field, and the third-generation detectors will expand our view of the gravitational wave universe to cosmic distances. This chapter will discuss the technological research and development required to build these third-generation detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott BP et al (The LIGO & Virgo Scientific Collaboration) (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Google Scholar 

  2. Abbott BP et al (The LIGO Scientific Collaboration) (2009) LIGO: the laser interferometer gravitational-wave observatory. Rep Progress Phys 72(7):076901

    Google Scholar 

  3. Accadia T et al (The Virgo Collaboration) (2012) Virgo: a laser interferometer to detect gravitational waves. J Instrum 7(03):P03012–P03012

    Google Scholar 

  4. Ando M et al (The TAMA Collaboration) (2001) Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. Phys Rev Lett 86:3950–3954

    Google Scholar 

  5. Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr BW, Berukoff S, Bose S, Cagnoli G, Casey MM, Churches D, Clubley D, Colacino CN, Crooks DRM, Cutler C, Danzmann K, Davies R, Dupuis R, Elliffe E, Fallnich C, Freise A, Goßler S, Grant A, Grote H, Heinzel G, Heptonstall A, Heurs M, Hewitson M, Hough J, Jennrich O, Kawabe K, Kötter K, Leonhardt V, Lück H, Malec M, McNamara PW, McIntosh SA, Mossavi K, Mohanty S, Mukherjee S, Nagano S, Newton GP, Owen BJ, Palmer D, Papa MA, Plissi MV, Quetschke V, Robertson DI, Robertson NA, Rowan S, Rüdiger A, Sathyaprakash BS, Schilling R, Schutz BF, Senior R, Sintes AM, Skeldon KD, Sneddon P, Stief F, Strain KA, Taylor I, Torrie CI, Vecchio A, Ward H, Weiland U, Welling H, Williams P, Winkler W, Woan G, Zawischa I (2002) The GEO 600 gravitational wave detector. Class Quant Grav 19(7):1377–1387

    Article  ADS  Google Scholar 

  6. Abbott BP et al (The LIGO Scientific Collaboration) (2015) Advanced LIGO. Class Quant Grav 32(7):074001

    Google Scholar 

  7. Acernese F et al (The Virgo Collaboration) (2014) Advanced virgo: a second-generation interferometric gravitational wave detector. Class Quant Grav 32(2):024001

    Google Scholar 

  8. Akutsu T et al (The KAGRA collaboration) (2019) Kagra: 2.5 generation interferometric gravitational wave detector. Nat Astron 3(1):35–40

    Google Scholar 

  9. Maggiore M, Van Den Broeck C, Bartolo N, Belgacem E, Bertacca D, Bizouard MA, Branchesi M, Clesse S, Foffa S, García-Bellido J, Grimm S, Harms J, Hinderer T, Matarrese S, Palomba C, Peloso M, Ricciardone A, Sakellariadou M (2020) Science case for the Einstein telescope. J Cosmol Astropart Phys 2020(03):050–050

    Article  Google Scholar 

  10. Punturo M, Abernathy M, Acernese F, Allen B, Andersson N, Arun K, Barone F, Barr B, Barsuglia M, Beker M, Beveridge N, Birindelli S, Bose S, Bosi L, Braccini S, Bradaschia C, Bulik T, Calloni E, Cella G, Chassande Mottin E, Chelkowski S, Chincarini A, Clark J, Coccia E, Colacino C, Colas J, Cumming A, Cunningham L, Cuoco E, Danilishin S, Danzmann K, De Luca G, De Salvo R, Dent T, De Rosa R, Di Fiore L, Di Virgilio A, Doets M, Fafone V, Falferi P, Flaminio R, Franc J, Frasconi F, Freise A, Fulda P, Gair J, Gemme G, Gennai A, Giazotto A, Glampedakis K, Granata M, Grote H, Guidi G, Hammond G, Hannam M, Harms J, Heinert D, Hendry M, Heng I, Hennes E, Hild S, Hough J, Husa S, Huttner S, Jones G, Khalili F, Kokeyama K, Kokkotas K, Krishnan B, Lorenzini M, Lück H, Majorana E, Mandel I, Mandic V, Martin I, Michel C, Minenkov Y, Morgado N, Mosca S, Mours B, Müller–Ebhardt H, Murray P, Nawrodt R, Nelson J, Oshaughnessy R, Ott CD, Palomba C, Paoli A, Parguez G, Pasqualetti A, Pas R (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quant Grav 27(19):194002

    Google Scholar 

  11. Abbott BP et al (The LIGO Scientific Collaboration) (2017) Exploring the sensitivity of next generation gravitational wave detectors. Class Quant Grav 34(4):044001

    Google Scholar 

  12. Reitze D, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown D, Coyne D, Eisenstein R, Evans M, Fritschel P, Hall E, Lazzarini A, Lovelace G, Read J, Sathyaprakash B, Shoemaker D, Smith J, Zucker M (2019) Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. 51

    Google Scholar 

  13. Martynov DV, Hall ED, Abbott BP, Abbott R, Abbott TD, Adams C, Adhikari RX, Anderson RA, Anderson SB, Arai K, Arain MA, Aston SM, Austin L, Ballmer SW, Barbet M, Barker D, Barr B, Barsotti L, Bartlett J, Barton MA, Bartos I, Batch JC, Bell AS, Belopolski I, Bergman J, Betzwieser J, Billingsley G, Birch J, Biscans S, Biwer C, Black E, Blair CD, Bogan C, Bond C, Bork R, Bridges DO, Brooks AF, Brown DD, Carbone L, Celerier C, Ciani G, Clara F, Cook D, Countryman ST, Cowart MJ, Coyne DC, Cumming A, Cunningham L, Damjanic M, Dannenberg R, Danzmann K, Da Silva Costa CF, Daw EJ, DeBra D, DeRosa RT, DeSalvo R, Dooley KL, Doravari S, Driggers JC, Dwyer SE, Effler A, Etzel T, Evans M, Evans TM, Factourovich M, Fair H, Feldbaum D, Fisher RP, Foley S, Frede M, Freise A, Fritschel P, Frolov VV, Fulda P, Fyffe M, Galdi V, Giaime JA, Giardina KD, Gleason JR (2016) Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D 93:112004

    Article  ADS  Google Scholar 

  14. Dwyer S, Sigg D, Ballmer SW, Barsotti L, Mavalvala N, Evans M (2015) Gravitational wave detector with cosmological reach. Phys Rev D 91:082001

    Article  ADS  Google Scholar 

  15. Braginsky VB, Khalili FY, Thorne KS (1992) Quantum measurement. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  16. Braginsky VB, Gorodetsky ML, Khalili FY, Matsko AB, Thorne KS, Vyatchanin SP (2003) Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization. Phys Rev D 67:082001

    Article  ADS  Google Scholar 

  17. Caves CM (1981) Quantum-mechanical noise in an interferometer. Phys Rev D 23:1693–1708

    Article  ADS  Google Scholar 

  18. Buonanno A, Chen Y (2001) Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys Rev D 64:042006

    Article  ADS  Google Scholar 

  19. Caves CM (1985) Defense of the standard quantum limit for free-mass position. Phys Rev Lett 54:2465–2468

    Article  ADS  MathSciNet  Google Scholar 

  20. Braginsky VB, Gorodetsky ML, Khalili FY, Thorne KS (2000) Energetic quantum limit in large-scale interferometers. AIP Conf Proc 523(1):180–190

    Article  ADS  Google Scholar 

  21. Tsang M, Wiseman HM, Caves CM (2011) Fundamental quantum limit to waveform estimation. Phys Rev Lett 106:090401

    Article  ADS  Google Scholar 

  22. Miao H, Smith ND, Evans M (2019) Quantum limit for laser interferometric gravitational-wave detectors from optical dissipation. Phys Rev X 9:011053

    Google Scholar 

  23. Braginsky VB, Vorontsov YI, Thorne KS (1980) Quantum nondemolition measurements. Science 209(4456):547–557

    Article  ADS  Google Scholar 

  24. Danilishin SL, Khalili FY, Miao H (2019) Advanced quantum techniques for future gravitational-wave detectors. Living Rev Relat 22(1):2

    Article  ADS  Google Scholar 

  25. Miao H, Yang H, Adhikari RX, Chen Y (2014) Quantum limits of interferometer topologies for gravitational radiation detection. Class Quant Grav 31(16):165010

    Article  ADS  MATH  Google Scholar 

  26. Kimble HJ, Levin Y, Matsko AB, Thorne KS, Vyatchanin SP (2001) Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys Rev D 65:022002

    Article  ADS  Google Scholar 

  27. Schumaker BL, Caves CM (1985) New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys Rev A 31:3093–3111

    Article  ADS  MathSciNet  Google Scholar 

  28. Caves CM, Schumaker BL (1985) New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys Rev A 31:3068–3092

    Article  ADS  MathSciNet  Google Scholar 

  29. Slusher RE, Hollberg LW, Yurke B, Mertz JC, Valley JF (1985) Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett 55:2409–2412

    Article  ADS  Google Scholar 

  30. McKenzie K, Grosse N, Bowen WP, Whitcomb SE, Gray MB, McClelland DE, Lam PK (2004) Squeezing in the audio gravitational-wave detection band. Phys Rev Lett 93:161105

    Article  ADS  Google Scholar 

  31. McKenzie K, Shaddock DA, McClelland DE, Buchler BC, Lam PK (2002) Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. Phys Rev Lett 88:231102

    Article  ADS  Google Scholar 

  32. Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R (2005) Demonstration of a squeezed-light-enhanced power- and signal-recycled michelson interferometer. Phys Rev Lett 95:211102

    Article  ADS  Google Scholar 

  33. Goda K, Miyakawa O, Mikhailov EE, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein AJ, Mavalvala N (2008) A quantum-enhanced prototype gravitational-wave detector. Nat Phys 4(6):472–476

    Article  Google Scholar 

  34. Aasi J et al (The LIGO Scientific Collaboration) (2013) Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nat Photon 7(8):613–619

    Google Scholar 

  35. Abadie J et al (The LIGO Scientific Collaboration) (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat Phys 7(12):962–965

    Google Scholar 

  36. Tse M, Yu H, Kijbunchoo N, Fernandez-Galiana A, Dupej P, Barsotti L, Blair CD, Brown DD, Dwyer SE, Effler A, Evans M, Fritschel P, Frolov VV, Green AC, Mansell GL, Matichard F, Mavalvala N, McClelland DE, McCuller L, McRae T, Miller J, Mullavey A, Oelker E, Phinney IY, Sigg D, Slagmolen BJJ, Vo T, Ward RL, Whittle C, Abbott R, Adams C, Adhikari RX, Ananyeva A, Appert S, Arai K, Areeda JS, Asali Y, Aston SM, Austin C, Baer AM, Ball M, Ballmer SW, Banagiri S, Barker D, Bartlett J, Berger BK, Betzwieser J, Bhattacharjee D, Billingsley G, Biscans S, Blair RM, Bode N, Booker P, Bork R, Bramley A, Brooks AF, Buikema A, Cahillane C, Cannon KC, Chen X, Ciobanu AA, Clara F, Cooper SJ, Corley KR, Countryman ST, Covas PB, Coyne DC, Datrier LEH, Davis D, Di Fronzo C, Driggers JC, Etzel T, Evans TM, Feicht J, Fulda P, Fyffe M, Giaime JA, Giardina KD, Godwin P (2019) Quantum-enhanced advanced ligo detectors in the era of gravitational-wave astronomy. Phys Rev Lett 123:231107

    Article  ADS  Google Scholar 

  37. Acernese F et al (The Virgo Collaboration) (2019) Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett 123:231108

    Google Scholar 

  38. Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R (2008) Observation of squeezed light with 10-db quantum-noise reduction. Phys Rev Lett 100:033602

    Article  ADS  Google Scholar 

  39. Stefszky MS, Mow-Lowry CM, Chua SSY, Shaddock DA, Buchler BC, Vahlbruch H, Khalaidovski A, Schnabel R, Lam PK, McClelland DE (2012) Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class Quant Grav 29(14):145015

    Article  ADS  Google Scholar 

  40. Vahlbruch H, Mehmet M, Danzmann K, Schnabel R (2016) Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys Rev Lett 117:110801

    Article  ADS  Google Scholar 

  41. McKenzie K, Mikhailov EE, Goda K, Lam PK, Grosse N, Gray MB, Mavalvala N, McClelland DE (2005) Quantum noise locking. J Opt B Quant Semiclass Opt 7(10):S421–S428

    Article  ADS  Google Scholar 

  42. Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R (2006) Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys Rev Lett 97:011101

    Article  ADS  Google Scholar 

  43. Chua SSY, Stefszky MS, Mow-Lowry CM, Buchler BC, Dwyer S, Shaddock DA, Lam PK, McClelland DE (2011) Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. Opt Lett 36(23):4680–4682

    Article  ADS  Google Scholar 

  44. Wade AR, Mansell GL, Chua SSY, Ward RL, Slagmolen BJJ, Shaddock DA, McClelland DE (2015) A squeezed light source operated under high vacuum. Sci Rep 5(1):18052

    Article  ADS  Google Scholar 

  45. Oelker E, Mansell G, Tse M, Miller J, Matichard F, Barsotti L, Fritschel P, McClelland DE, Evans M, Mavalvala N (2016) Ultra-low phase noise squeezed vacuum source for gravitational wave detectors. Optica 3(7):682–685

    Article  ADS  Google Scholar 

  46. Ciobanu AA, Brown DD, Veitch PJ, Ottaway DJ (2020) Mode matching error signals using radio-frequency beam shape modulation. Appl Opt 59(31):9884–9895

    Article  ADS  Google Scholar 

  47. Steinlechner S, Rohweder N-O, Korobko M, Töyrä D, Freise A, Schnabel R (2018) Mitigating mode-matching loss in nonclassical laser interferometry. Phys Rev Lett 121:263602

    Article  ADS  Google Scholar 

  48. Barsotti L, Harms J, Schnabel R (2018) Squeezed vacuum states of light for gravitational wave detectors. Rep Progress Phys 82(1):016905

    Article  ADS  Google Scholar 

  49. Andersen UL, Gehring T, Marquardt C, Leuchs G (2016) 30 years of squeezed light generation. Phys Scr 91(5):053001

    Article  ADS  Google Scholar 

  50. Chua SSY, Slagmolen BJJ, Shaddock DA, McClelland DE (2014) Quantum squeezed light in gravitational-wave detectors. Class Quant Grav 31(18):183001

    Article  ADS  MATH  Google Scholar 

  51. Adhikari RX, Arai K, Brooks AF, Wipf C, Aguiar O, Altin P, Barr B, Barsotti L, Bassiri R, Bell A, Billingsley G, Birney R, Blair D, Bonilla E, Briggs J, Brown DD, Byer R, Cao H, Constancio M, Cooper S, Corbitt T, Coyne D, Cumming A, Daw E, deRosa R, Eddolls G, Eichholz J, Evans M, Fejer M, Ferreira EC, Freise A, Frolov VV, Gras S, Green A, Grote H, Gustafson E, Hall ED, Hammond G, Harms J, Harry G, Haughian K, Heinert D, Heintze M, Hellman F, Hennig J, Hennig M, Hild S, Hough J, Johnson W, Kamai B, Kapasi D, Komori K, Koptsov D, Korobko M, Korth WZ, Kuns K, Lantz B, Leavey S, Magana-Sandoval F, Mansell G, Markosyan A, Markowitz A, Martin I, Martin R, Martynov D, McClelland DE, McGhee G, McRae T, Mills J, Mitrofanov V, Molina-Ruiz M, Mow-Lowry C, Munch J, Murray P, Ng S, Okada MA, Ottaway DJ, Prokhorov L, Quetschke V, Reid S, Reitze D, Richardson J, Robie R, Romero-Shaw I, Route R. A cryogenic silicon interferometer for gravitational-wave detection. Class Quant Grav 37(16):165003

    Google Scholar 

  52. Schnabel R, Britzger M, Brückner F, Burmeister O, Danzmann K, Duck J, Eberle T, Friedrich D, Luck H, Mehmet M, Nawrodt R, Steinlechner S, Willke B (2010) Building blocks for future detectors: silicon test masses and 1550 nm laser light. J Phys Conf Ser 228:012029

    Article  Google Scholar 

  53. Schönbeck A, Thies F, Schnabel R (2018) 13db squeezed vacuum states at 1550nm from 12mw external pump power at 775nm. Opt Lett 43(1):110–113

    Article  ADS  Google Scholar 

  54. Mansell GL, McRae TG, Altin PA, Yap MJ, Ward RL, Slagmolen BJJ, Shaddock DA, McClelland DE (2018) Observation of squeezed light in the 2 μm region. Phys Rev Lett 120:203603

    Article  ADS  Google Scholar 

  55. Yap MJ, Gould DW, McRae TG, Altin PA, Kijbunchoo N, Mansell GL, Ward RL, Shaddock DA, Slagmolen BJJ, McClelland DE (2019) Squeezed vacuum phase control at 2 μ m. Opt Lett 44(21):5386–5389

    Article  ADS  Google Scholar 

  56. Yu H, McCuller L, Tse M, Kijbunchoo N, Barsotti L, Mavalvala N, Betzwieser J, Blair CD, Dwyer SE, Effler A, Evans M, Fernandez-Galiana A, Fritschel P, Frolov VV, Matichard F, McClelland DE, McRae T, Mullavey A, Sigg D, Slagmolen BJJ, Whittle C, Buikema A, Chen Y, Corbitt TR, Schnabel R, Abbott R, Adams C, Adhikari RX, Ananyeva A, Appert S, Arai K, Areeda JS, Asali Y, Aston SM, Austin C, Baer AM, Ball M, Ballmer SW, Banagiri S, Barker D, Bartlett J, Berger BK, Bhattacharjee D, Billingsley G, Biscans S, Blair RM, Bode N, Booker P, Bork R, Bramley A, Brooks AF, Brown DD, Cahillane C, Cannon KC, Chen X, Ciobanu AA, Clara F, Cooper SJ, Corley KR, Countryman ST, Covas PB, Coyne DC, Datrier LEH, Davis D, Di Fronzo C, Dooley KL, Driggers JC, Dupej P, Etzel T, Evans TM, Feicht J, Fulda P, Fyffe M, Giaime JA, Giardina KD, Godwin P, Goetz E, Gras S, Gray C (2020) Quantum correlations between light and the kilogram-mass mirrors of ligo. Nature 583(7814):43–47

    Article  ADS  Google Scholar 

  57. Acernese F et al (The Virgo Collaboration) (2020) Quantum backaction on kg-scale mirrors: observation of radiation pressure noise in the advanced virgo detector. Phys Rev Lett 125:131101

    Google Scholar 

  58. Purdy TP, Peterson RW, Regal CA (2013) Observation of radiation pressure shot noise on a macroscopic object. Science 339(6121):801–804

    Article  ADS  Google Scholar 

  59. Teufel JD, Lecocq F, Simmonds RW (2016) Overwhelming thermomechanical motion with microwave radiation pressure shot noise. Phys Rev Lett 116:013602

    Article  ADS  Google Scholar 

  60. Cripe J, Aggarwal N, Lanza R, Libson A, Singh R, Heu P, Follman D, Cole GD, Mavalvala N, Corbitt T. Measurement of quantum back action in the audio band at room temperature. Nature 568(7752):364–367

    Google Scholar 

  61. Yap MJ, Cripe J, Mansell GL, McRae TG, Ward RL, Slagmolen BJJ, Heu P, Follman D, Cole GD, Corbitt T, McClelland DE (2020) Broadband reduction of quantum radiation pressure noise via squeezed light injection. Nat Photon 14(1):19–23

    Article  Google Scholar 

  62. Chelkowski S, Vahlbruch H, Hage B, Franzen A, Lastzka N, Danzmann K, Schnabel R (2005) Experimental characterization of frequency-dependent squeezed light. Phys Rev A 71: 013806

    Article  ADS  Google Scholar 

  63. Isogai T, Miller J, Kwee P, Barsotti L, Evans M (2013) Loss in long-storage-time optical cavities. Opt Express 21(24):30114–30125

    Article  ADS  Google Scholar 

  64. Kwee P, Miller J, Isogai T, Barsotti L, Evans M (2014) Decoherence and degradation of squeezed states in quantum filter cavities. Phys Rev D 90:062006

    Article  ADS  Google Scholar 

  65. Evans M, Barsotti L, Kwee P, Harms J, Miao H (2013) Realistic filter cavities for advanced gravitational wave detectors. Phys Rev D 88:022002

    Article  ADS  Google Scholar 

  66. Oelker E, Isogai T, Miller J, Tse M, Barsotti L, Mavalvala N, Evans M (2016) Audio-band frequency-dependent squeezing for gravitational-wave detectors. Phys Rev Lett 116:041102

    Article  ADS  Google Scholar 

  67. McCuller L, Whittle C, Ganapathy D, Komori K, Tse M, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H, Zucker ME, Evans M (2020) Frequency-dependent squeezing for advanced LIGO. Phys Rev Lett 124:171102

    Article  ADS  Google Scholar 

  68. Zhao Y, Aritomi N, Capocasa E, Leonardi M, Eisenmann M, Guo Y, Polini E, Tomura A, Arai K, Aso Y, Huang Y-C, Lee R-K, Lück H, Miyakawa O, Prat P, Shoda A, Tacca M, Takahashi R, Vahlbruch H, Vardaro M, Wu C-M, Barsuglia M, Flaminio R (2020) Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys Rev Lett 124:171101

    Article  ADS  Google Scholar 

  69. Corbitt T, Chen Y, Khalili F, Ottaway D, Vyatchanin S, Whitcomb S, Mavalvala N (2006) Squeezed-state source using radiation-pressure-induced rigidity. Phys Rev A 73:023801

    Article  ADS  Google Scholar 

  70. Ma Y, Danilishin SL, Zhao C, Miao H, Zach Korth W, Chen Y, Ward RL, Blair DG (2014) Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. Phys Rev Lett 113:151102

    Article  ADS  Google Scholar 

  71. Ma Y, Miao H, Pang BH, Evans M, Zhao C, Harms J, Schnabel R, Chen Y (2017) Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement. Nat Phys 13(8):776–780

    Article  Google Scholar 

  72. Purdy TP, Grutter KE, Srinivasan K, Taylor JM (2017) Quantum correlations from a room-temperature optomechanical cavity. Science 356(6344):1265–1268

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Sharifi S, Banadaki YM, Cullen T, Veronis G, Dowling JP, Corbitt T (2020) Design of microresonators to minimize thermal noise below the standard quantum limit. Rev Sci Instrum 91(5):054504

    Article  ADS  Google Scholar 

  74. Brown DD, Miao H, Collins C, Mow-Lowry C, Töyrä D, Freise A (2017) Broadband sensitivity enhancement of detuned dual-recycled michelson interferometers with EPR entanglement. Phys Rev D 96:062003

    Article  ADS  Google Scholar 

  75. Beckey JL, Ma Y, Boyer V, Miao H (2019) Broadband quantum noise reduction in future long baseline gravitational-wave detectors via EPR entanglement. Phys Rev D 100:083011

    Article  ADS  Google Scholar 

  76. Yap MJ, Altin P, McRae TG, Slagmolen BJJ, Ward RL, McClelland DE (2020) Generation and control of frequency-dependent squeezing via Einstein–Podolsky–Rosen entanglement. Nat Photon 14(4):223–226

    Article  ADS  Google Scholar 

  77. Südbeck J, Steinlechner S, Korobko M, Schnabel R (2020) Demonstration of interferometer enhancement through einstein–podolsky–rosen entanglement. Nat Photon 14(4):240–244

    Article  ADS  Google Scholar 

  78. Meers BJ (1988) Recycling in laser-interferometric gravitational-wave detectors. Phys Rev D 38:2317–2326

    Article  ADS  Google Scholar 

  79. Mizuno J, Strain KA, Nelson PG, Chen JM, Schilling R, Rüdiger A, Winkler W, Danzmann K (1993) Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors. Phys Lett A 175(5):273–276

    Article  ADS  Google Scholar 

  80. Miyakawa O, Ward R, Adhikari R, Evans M, Abbott B, Bork R, Busby D, Heefner J, Ivanov A, Smith M, Taylor R, Vass S, Weinstein A, Varvella M, Kawamura S, Kawazoe F, Sakata S, Mow-Lowry C (2006) Measurement of optical response of a detuned resonant sideband extraction gravitational wave detector. Phys Rev D 74:022001

    Article  ADS  Google Scholar 

  81. Hild S, Grote H, Hewtison M, Lück H, Smith JR, Strain KA, Willke B, Danzmann K (2007) Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector. Class Quant Grav 24(6):1513–1523

    Article  ADS  MATH  Google Scholar 

  82. Ackley K, Adya VB, Agrawal P, Altin P, Ashton G, Bailes M, Baltinas E, Barbuio A, Beniwal D, Blair C et al (2020) Neutron star extreme matter observatory: a kilohertz-band gravitational-wave detector in the global network. Publ Astron Soc Aust 37:e047

    Article  ADS  Google Scholar 

  83. Buonanno A, Chen Y (2002) Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys Rev D 65:042001

    Article  ADS  Google Scholar 

  84. Harms J, Chen Y, Chelkowski S, Franzen A, Vahlbruch H, Danzmann K, Schnabel R (2003) Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys Rev D 68:042001

    Article  ADS  Google Scholar 

  85. Staley A, Martynov D, Abbott R, Adhikari RX, Arai K, Ballmer S, Barsotti L, Brooks AF, DeRosa RT, Dwyer S, Effler A, Evans M, Fritschel P, Frolov VV, Gray C, Guido CJ, Gustafson R, Heintze M, Hoak D, Izumi K, Kawabe K, King EJ, Kissel JS, Kokeyama K, Landry M, McClelland DE, Miller J, Mullavey A, O’Reilly B, Rollins JG, Sanders JR, Schofield RMS, Sigg D, Slagmolen BJJ, Smith-Lefebvre ND, Vajente G, Ward RL, Wipf C (2014) Achieving resonance in the advanced LIGO gravitational-wave interferometer. Class Quant Grav 31(24):245010

    Article  ADS  Google Scholar 

  86. Thüring A, Schnabel R, Lück H, Danzmann K (2007) Detuned twin-signal-recycling for ultrahigh-precision interferometers. Opt Lett 32(8):985–987

    Article  ADS  Google Scholar 

  87. Miao H, Yang H, Martynov D (2018) Towards the design of gravitational-wave detectors for probing neutron-star physics. Phys Rev D 98:044044

    Article  ADS  Google Scholar 

  88. Martynov D, Miao H, Yang H, Vivanco FH, Thrane E, Smith R, Lasky P, East WE, Adhikari R, Bauswein A, Brooks A, Chen Y, Corbitt T, Freise A, Grote H, Levin Y, Zhao C, Vecchio A (2019) Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys Rev D 99:102004

    Article  ADS  Google Scholar 

  89. Purdue P (2002) Analysis of a quantum nondemolition speed-meter interferometer. Phys Rev D 66:022001

    Article  ADS  Google Scholar 

  90. Danilishin SL, Gräf C, Leavey SS, Hennig J, Houston EA, Pascucci D, Steinlechner S, Wright J, Hild S (2015) Quantum noise of non-ideal sagnac speed meter interferometer with asymmetries. New J Phys 17(4):043031

    Article  MATH  Google Scholar 

  91. Robertson DI, Morrison E, Hough J, Killbourn S, Meers BJ, Newton GP, Robertson NA, Strain KA, Ward H (1995) The glasgow 10 m prototype laser interferometric gravitational wave detector. Rev Sci Instrum 66(9):4447–4452

    Article  ADS  Google Scholar 

  92. Gräf C, Barr BW, Bell AS, Campbell F, Cumming AV, Danilishin SL, Gordon NA, Hammond GD, Hennig J, Houston EA, Huttner SH, Jones RA, Leavey SS, Lück H, Macarthur J, Marwick M, Rigby S, Schilling R, Sorazu B, Spencer A, Steinlechner S, Strain KA, Hild S (2014) Design of a speed meter interferometer proof-of-principle experiment. Class Quant Grav 31(21):215009

    Article  ADS  Google Scholar 

  93. Knyazev E, Danilishin S, Hild S, Khalili FY (2018) Speedmeter scheme for gravitational-wave detectors based on epr quantum entanglement. Phys Lett A 382(33):2219–2225. Special Issue in memory of Professor V.B. Braginsky

    Google Scholar 

  94. Huttner SH, Danilishin SL, Barr BW, Bell AS, Gräf C, Hennig JS, Hild S, Houston EA, Leavey SS, Pascucci D, Sorazu B, Spencer AP, Steinlechner S, Wright JL, Zhang T, Strain KA (2016) Candidates for a possible third-generation gravitational wave detector: comparison of ring-sagnac and sloshing-sagnac speedmeter interferometers. Class Quant Grav 34(2):024001

    Article  ADS  Google Scholar 

  95. Korobko M, Ma Y, Chen Y, Schnabel R (2019) Quantum expander for gravitational-wave observatories. Light Sci Appl 8(1):118

    Article  Google Scholar 

  96. Korobko M, Kleybolte L, Ast S, Miao H, Chen Y, Schnabel R (2017) Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys Rev Lett 118:143601

    Article  ADS  Google Scholar 

  97. Adya VB, Yap MJ, Töyrä D, McRae TG, Altin PA, Sarre LK, Meijerink M, Kijbunchoo N, Slagmolen BJJ, Ward RL, McClelland DE (2020) Quantum enhanced kHz gravitational wave detector with internal squeezing. Class Quant Grav 37(7):07LT02

    Google Scholar 

  98. Miao H, Ma Y, Zhao C, Chen Y (2015) Enhancing the bandwidth of gravitational-wave detectors with unstable optomechanical filters. Phys Rev Lett 115:211104

    Article  ADS  Google Scholar 

  99. Bentley J, Jones P, Martynov D, Freise A, Miao H (2019) Converting the signal-recycling cavity into an unstable optomechanical filter to enhance the detection bandwidth of gravitational-wave detectors. Phys Rev D 99:102001

    Article  ADS  Google Scholar 

  100. Zhou M, Zhou Z, Shahriar SM (2015) Quantum noise limits in white-light-cavity-enhanced gravitational wave detectors. Phys Rev D 92:082002

    Article  ADS  Google Scholar 

  101. Kwee P, Bogan C, Danzmann K, Frede M, Kim H, King P, Pöld J, Puncken O, Savage RL, Seifert F, Wessels P, Winkelmann L, Willke B (2012) Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Opt Express 20(10):10617–10634

    Article  ADS  Google Scholar 

  102. Buikema A, Cahillane C, Mansell GL, Blair CD, Abbott R, Adams C, Adhikari RX, Ananyeva A, Appert S, Arai K, Areeda JS, Asali Y, Aston SM, Austin C, Baer AM, Ball M, Ballmer SW, Banagiri S, Barker D, Barsotti L, Bartlett J, Berger BK, Betzwieser J, Bhattacharjee D, Billingsley G, Biscans S, Blair RM, Bode N, Booker P, Bork R, Bramley A, Brooks AF, Brown DD, Cannon KC, Chen X, Ciobanu AA, Clara F, Cooper SJ, Corley KR, Countryman ST, Covas PB, Coyne DC, Datrier LEH, Davis D, Di Fronzo C, Dooley KL, Driggers JC, Dupej P, Dwyer SE, Effler A, Etzel T, Evans M, Evans TM, Feicht J, Fernandez-Galiana A, Fritschel P, Frolov VV, Fulda P, Fyffe M, Giaime JA, Giardina KD, Godwin P, Goetz E, Gras S, Gray C, Gray R, Green AC, Gustafson EK, Gustafson R, Hanks J, Hanson J, Hardwick T, Hasskew RK, Heintze MC, Helmling-Cornell AF, Holland NA, Jones JD, Kandh S (2020) Sensitivity and performance of the advanced LIGO detectors in the third observing run. Phys Rev D 102:062003

    Article  ADS  Google Scholar 

  103. Buikema A, Jose F, Augst SJ, Fritschel P, Mavalvala N (2019) Narrow-linewidth fiber amplifier for gravitational-wave detectors. Opt Lett 44(15):3833–3836

    Article  ADS  Google Scholar 

  104. Wellmann F, Steinke M, Meylahn F, Bode N, Willke B, Overmeyer L, Neumann J, Kracht D (2019) High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Opt Express 27(20):28523–28533

    Article  ADS  Google Scholar 

  105. Wellmann F, Steinke M, Wessels P, Bode N, Meylahn F, Willke B, Overmeyer L, Neumann J, Kracht D (2020) Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors. Appl Opt 59(26):7945–7950

    Article  ADS  Google Scholar 

  106. Wei L-W, Cleva F, Man CN (2016) Coherently combined master oscillator fiber power amplifiers for advanced virgo. Opt Lett 41(24):5817–5820

    Article  ADS  Google Scholar 

  107. Zhao J, Guiraud G, Pierre C, Floissat F, Casanova A, Hreibi A, Chaibi W, Traynor N, Boullet J, Santarelli G (2018) High-power all-fiber ultra-low noise laser. Appl Phys B 124(6):114

    Article  ADS  Google Scholar 

  108. Zhang Q, Hou Y, Wang X, Song W, Chen X, Bin W, Li J, Zhao C, Wang P (2020) 5 w ultra-low-noise 2 μm m single-frequency fiber laser for next-generation gravitational wave detectors. Opt Lett 45(17):4911–4914

    Article  ADS  Google Scholar 

  109. Kapasi DP, Eichholz J, McRae T, Ward RL, Slagmolen BJJ, Legge S, Hardman KS, Altin PA, McClelland DE (2020) Tunable narrow-linewidth laser at 2 m wavelength for gravitational wave detector research. Opt Express 28(3):3280–3288

    Article  ADS  Google Scholar 

  110. De Varona O, Fittkau W, Booker P, Theeg T, Steinke M, Kracht D, Neumann J, Wessels P (2017) Single-frequency fiber amplifier at 1.5 μ m with 100 w in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors. Opt Express 25(21):24880–24892

    Article  ADS  Google Scholar 

  111. Brooks AF, Hosken D, Munch J, Veitch PJ, Yan Z, Zhao C, Fan Y, Ju L, Blair D, Willems P, Slagmolen B, Degallaix J (2009) Direct measurement of absorption-induced wavefront distortion in high optical power systems. Appl Opt 48(2):355–364

    Article  ADS  Google Scholar 

  112. Brooks AF, Abbott B, Arain MA, Ciani G, Cole A, Grabeel G, Gustafson E, Guido C, Heintze M, Heptonstall A, Jacobson M, Kim W, King E, Lynch A, O’Connor S, Ottaway D, Mailand K, Mueller G, Munch J, Sannibale V, Shao Z, Smith M, Veitch P, Vo T, Vorvick C, Willems P (2016) Overview of advanced LIGO adaptive optics. Appl Opt 55(29):8256– 8265

    Article  ADS  Google Scholar 

  113. Ramette J, Kasprzack M, Brooks A, Blair C, Wang H, Heintze M (2016) Analytical model for ring heater thermal compensation in the advanced laser interferometer gravitational-wave observatory. Appl Opt 55(10):2619–2625

    Article  ADS  Google Scholar 

  114. Wittel H, Affeldt C, Bisht A, Doravari S, Grote H, Lough J, Lück H, Schreiber E, Strain KA, Danzmann K (2018) Matrix heater in the gravitational wave observatory geo 600. Opt Express 26(18):22687–22697

    Article  ADS  Google Scholar 

  115. Accadia T et al (The Virgo Collaboration) (2013) Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Class Quant Grav 30(5):055017

    Google Scholar 

  116. Sidles JA, Sigg D (2006) Optical torques in suspended Fabry–Perot interferometers. Phys Lett A 354(3):167–172

    Article  ADS  Google Scholar 

  117. Braginsky VB, Strigin SE, Vyatchanin SP (2001) Parametric oscillatory instability in Fabry–Perot interferometer. Phys Lett A 287(5):331–338

    Article  ADS  Google Scholar 

  118. Evans M, Gras S, Fritschel P, Miller J, Barsotti L, Martynov D, Brooks A, Coyne D, Abbott R, Adhikari RX, Arai K, Bork R, Kells B, Rollins J, Smith-Lefebvre N, Vajente G, Yamamoto H, Adams C, Aston S, Betzweiser J, Frolov V, Mullavey A, Pele A, Romie J, Thomas M, Thorne K, Dwyer S, Izumi K, Kawabe K, Sigg D, Derosa R, Effler A, Kokeyama K, Ballmer S, Massinger TJ, Staley A, Heinze M, Mueller C, Grote H, Ward R, King E, Blair D, Ju L, Zhao C (2015) Observation of parametric instability in advanced LIGO. Phys Rev Lett 114:161102

    Article  ADS  Google Scholar 

  119. Dooley KL, Barsotti L, Adhikari RX, Evans M, Fricke TT, Fritschel P, Frolov V, Kawabe K, Smith-Lefebvre N (2013) Angular control of optical cavities in a radiation-pressure-dominated regime: the enhanced LIGO case. J Opt Soc Am A 30(12):2618–2626

    Article  ADS  Google Scholar 

  120. Callen HB, Welton TA. Irreversibility and generalized noise. Phys Rev 83(1):34–40

    Google Scholar 

  121. Levin Y. Internal thermal noise in the LIGO test masses: a direct approach. Phys Rev D 57(2):659–663

    Google Scholar 

  122. Bondu F, Hello P, Vinet J-Y. Thermal noise in mirrors of interferometric gravitational wave antennas. Phys Lett A 246(3):227–236

    Google Scholar 

  123. Yamamoto K, Ando M, Kawabe K, Tsubono K. Thermal noise caused by an inhomogeneous loss in the mirrors used in the gravitational wave detector. Phys Lett A 305(1):18–25

    Google Scholar 

  124. Levin Y (2008) Fluctuation–dissipation theorem for thermo-refractive noise. Phys Lett A 372(12):1941–1944

    Article  ADS  Google Scholar 

  125. Evans M, Ballmer S, Fejer M, Fritschel P, Harry G, Ogin G. Thermo-optic noise in coated mirrors for high-precision optical measurements. Phys Rev D 78(10):102003

    Google Scholar 

  126. Harry GM, Gretarsson AM, Saulson PR, Kittelberger SE, Penn SD, Startin WJ, Rowan S, Fejer MM, Crooks DRM, Cagnoli G, Hough J, Nakagawa N. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class Quant Grav 19(5):897

    Google Scholar 

  127. Somiya K, Yamamoto K. Coating thermal noise of a finite-size cylindrical mirror. Phys Rev D 79(10):102004

    Google Scholar 

  128. Penn SD, Sneddon PH, Armandula H, Betzwieser JC, Cagnoli G, Camp J, Crooks DRM, Fejer MM, Gretarsson AM, Harry GM, Hough J, Kittelberger SE, Mortonson MJ, Route R, Rowan S, Vassiliou CC. Mechanical loss in tantala/silica dielectric mirror coatings. Class Quant Grav 20(13):2917

    Google Scholar 

  129. Chalermsongsak T, Hall ED, Cole GD, Follman D, Seifert F, Arai K, Gustafson EK, Smith JR, Aspelmeyer M, Adhikari RX. Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors. Metrologia 53(2):860–868

    Google Scholar 

  130. Harry G, Bodiya TP. Optical coatings and thermal noise in precision measurement. Cambridge University Press, Cambridge

    Google Scholar 

  131. Ageev A, Palmer BC, De Felice A, Penn SD, Saulson PR. Very high quality factor measured in annealed fused silica. Class Quant Grav 21(16):3887–3892

    Google Scholar 

  132. Martin IW, Bassiri R, Nawrodt R, Fejer MM, Gretarsson A, Gustafson E, Harry G, Hough J, MacLaren I, Penn S, Reid S, Route R, Rowan S, Schwarz C, Seidel P, Scott J, Woodcraft AL. Effect of heat treatment on mechanical dissipation in Ta 2 O 5 coatings. Class Quant Grav 27(22):225020

    Google Scholar 

  133. Harry GM, Abernathy MR, Becerra-Toledo AE, Armandula H, Black E, Dooley K, Eichenfield M, Nwabugwu C, Villar A, Crooks DRM, Cagnoli G, Hough J, How CR, MacLaren I, Murray P, Reid S, Rowan S, Sneddon PH, Fejer MM, Route R, Penn SD, Ganau P, Mackowski J-M, Michel C, Pinard L, Remillieux A. Titania-doped tantala/silica coatings for gravitational-wave detection. Class Quant Grav 24(2):405–415.

    Google Scholar 

  134. Flaminio R, Franc J, Michel C, Morgado N, Pinard L, Sassolas B. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Class Quant Grav 27(8):084030

    Google Scholar 

  135. Pinard L, Michel C, Sassolas B, Balzarini L, Degallaix J, Dolique V, Flaminio R, Forest D, Granata M, Lagrange B, Straniero N, Teillon J, Cagnoli G. Mirrors used in the LIGO interferometers for first detection of gravitational waves. Appl Opt 56(4): C11–C15

    Google Scholar 

  136. Granata M, Saracco E, Morgado N, Cajgfinger A, Cagnoli G, Degallaix J, Dolique V, Forest D, Franc J, Michel C, Pinard L, Flaminio R. Mechanical loss in state-of-the-art amorphous optical coatings. Phys Rev D 93(1):012007

    Google Scholar 

  137. Martin I, Armandula H, Comtet C, Fejer MM, Gretarsson A, Harry G, Hough J, Mackowski J-MM, MacLaren I, Michel C, Montorio J-L, Morgado N, Nawrodt R, Penn S, Reid S, Remillieux A, Route R, Rowan S, Schwarz C, Seidel P, Vodel W, Zimmer A. Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta 2 O 5 doped with TiO 2. Class Quant Grav 25(5):055005

    Google Scholar 

  138. Granata M, Craig K, Cagnoli G, Carcy C, Cunningham W, Degallaix J, Flaminio R, Forest D, Hart M, Hennig J-S, Hough J, MacLaren I, Martin IW, Michel C, Morgado N, Otmani S, Pinard L, Rowan S. Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise. Opt Lett 38(24):5268–5271

    Google Scholar 

  139. Yamamoto K, Miyoki S, Uchiyama T, Ishitsuka H, Ohashi M, Kuroda K, Tomaru T, Sato N, Suzuki T, Haruyama T, Yamamoto A, Shintomi T, Numata K, Waseda K, Ito K, Watanabe K. Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection. Phys Rev D 74(2):022002

    Google Scholar 

  140. Amato A, Cagnoli G, Canepa M, Coillet E, Degallaix J, Dolique V, Forest D, Granata M, Martinez V, Michel C, Pinard L, Sassolas B, Teillon J. High-reflection coatings for gravitational-wave detectors:state of the art and future developments. J Phys Conf Ser 957:012006

    Google Scholar 

  141. Granata M, Amato A, Cagnoli G, Coulon M, Degallaix J, Forest D, Mereni L, Michel C, Pinard L, Sassolas B, Teillon J. Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors. Appl Opt 59(5):A229–A235

    Google Scholar 

  142. Pan H-W, Kuo L-C, Chang L-A, Chao S, Martin IW, Steinlechner J, Fletcher M. Silicon nitride and silica quarter-wave stacks for low-thermal-noise mirror coatings. Phys Rev D 98(10):102001

    Google Scholar 

  143. Yam W, Gras S, Evans M. Multimaterial coatings with reduced thermal noise. Phys Rev D 91(4):042002

    Google Scholar 

  144. Craig K, Steinlechner J, Murray PG, Bell AS, Birney R, Haughian K, Hough J, MacLaren I, Penn S, Reid S, Robie R, Rowan S, Martin IW. Mirror coating solution for the cryogenic Einstein telescope. Phys Rev Lett 122(23):231102

    Google Scholar 

  145. Birney R, Steinlechner J, Tornasi Z, MacFoy S, Vine D, Bell AS, Gibson D, Hough J, Rowan S, Sortais P, Sproules S, Tait S, Martin IW, Reid S. Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy. Phys Rev Lett 121(19):191101

    Google Scholar 

  146. Netterfield RP, Gross M, Baynes FN, Green KL, Harry GM, Armandula H, Rowan S, Hough J, Crooks DRM, Fejer MM, Route R, Penn SD. Low mechanical loss coatings for LIGO optics: progress report. In: Fulton ML, Kruschwitz JDT (eds) Proceedings of SPIE, vol 5870, p 58700H

    Google Scholar 

  147. Sankur H, Gunning W. Crystallization and diffusion in composite TiO2–SiO2 thin films. J Appl Phys 66(10):4747–4751

    Google Scholar 

  148. Liu M, He G, Zhu LQ, Fang Q, Li GH, Zhang LD. Microstructure and interfacial properties of HfO2–Al2O3 nanolaminate films. Appl Surf Sci 252(18):6206–6211

    Google Scholar 

  149. Pinto IM. Nanometer composites for low noise optical coatings status and perspectives

    Google Scholar 

  150. Pan H-W, Wang S-J, Kuo L-C, Chao S, Principe M, Pinto IM, DeSalvo R. Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method. Opt Express 22(24):29847–29854

    Google Scholar 

  151. Kuo L-C, Pan H-W, Chang C-L, Chao S. Low cryogenic mechanical loss composite silica thin film for low thermal noise dielectric mirror coatings. Opt Lett 44(2):247–250

    Google Scholar 

  152. Cole GD, Zhang W, Martin MJ, Ye J, Aspelmeyer M. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nat Photon 7(8):644–650

    Google Scholar 

  153. Marchiò M, Flaminio R, Pinard L, Forest D, Deutsch C, Heu P, Follman D, Cole GD (2018) Optical performance of large-area crystalline coatings. Opt Express 26(5):6114– 6125

    Article  ADS  Google Scholar 

  154. Cole GD, Zhang W, Bjork BJ, Follman D, Heu P, Deutsch C, Sonderhouse L, Robinson J, Franz C, Alexandrovski A, Notcutt M, Heckl OH, Ye J, Aspelmeyer M. High-performance near- and mid-infrared crystalline coatings. Optica 3(6):647–656

    Google Scholar 

  155. Koch P, Cole GD, Deutsch C, Follman D, Heu P, Kinley-Hanlon M, Kirchhoff R, Leavey S, Lehmann J, Oppermann P, Rai AK, Tornasi Z, Wöhler J, Wu DS, Zederbauer T, Lück H. Thickness uniformity measurements and damage threshold tests of large-area GaAs/AlGaAs crystalline coatings for precision interferometry. Opt Express 27(25):36731–36740

    Google Scholar 

  156. Penn SD, Kinley-Hanlon MM, MacMillan IAO, Heu P, Follman D, Deutsch C, Cole GD, Harry GM. Mechanical ringdown studies of large-area substrate-transferred GaAs/AlGaAs crystalline coatings. JOSA B 36(4):C15–C21

    Google Scholar 

  157. MacMillan I (2019) Brownian thermal noise in AlGaAs and its implications for LIGO’s sensitivity. Undergraduate thesis, Gergetown university

    Google Scholar 

  158. Aggarwal N, Cullen TJ, Cripe J, Cole GD, Lanza R, Libson A, Follman D, Heu P, Corbitt T, Mavalvala N. Room-temperature optomechanical squeezing. Nat Phys 16(7):784–788

    Google Scholar 

  159. Cumming AV, Craig K, Martin IW, Bassiri R, Cunningham L, Fejer MM, Harris JS, Haughian K, Heinert D, Lantz B, Lin AC, Markosyan AS, Nawrodt R, Route R, Rowan S. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors. Class Quant Grav 32(3):035002

    Google Scholar 

  160. Hong T, Miller J, Yamamoto H, Chen Y, Adhikari R. Effects of mirror aberrations on Laguerre-Gaussian beams in interferometric gravitational-wave detectors. Phys Rev D 84(10):102001

    Google Scholar 

  161. D’Ambrosio E, O’Shaugnessy R, Thorne K, Willems P, Strigin S, Vyatchanin S. Advanced LIGO: non-Gaussian beams. Class Quant Grav 21(5):S867–S873

    Google Scholar 

  162. Khalili FY. Reducing the mirrors coating noise in laser gravitational-wave antennae by means of double mirrors. Phys Lett A 334(1):67–72

    Google Scholar 

  163. Gurkovsky AG, Heinert D, Hild S, Nawrodt R, Somiya K, Vyatchanin SP, Wittel H. Reducing thermal noise in future gravitational wave detectors by employing Khalili etalons. Phys Lett A 375(46):4147–4157

    Google Scholar 

  164. Liu YT, Thorne KS. Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses. Phys Rev D 62(12):122002

    Google Scholar 

  165. Braginsky VB, Gorodetsky ML, Vyatchanin SP. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys Lett A 264(1):1–10

    Google Scholar 

  166. Cerdonio M, Conti L, Heidmann A, Pinard M. Thermoelastic effects at low temperatures and quantum limits in displacement measurements. Phys Rev D 63(8):082003

    Google Scholar 

  167. Somiya K, Kokeyama K, Nawrodt R. Remarks on thermoelastic effects at low temperatures and quantum limits in displacement measurements. Phys Rev D 82(12):127101

    Google Scholar 

  168. Braginsky VB, Vyatchanin SP. Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae. Phys Lett A 324(5):345–360

    Google Scholar 

  169. Akutsu T, Aso Y, Araki S, Bajpai R, Chen D, Craig K, Creus W, Enomoto Y, Fujii Y, Fukunaga M, Hagiwara A, Haino S, Hasegawa K, Inoue Y, Izumi K, Kimura N, Kokeyama K, Kumar R, Majorana E, Michimura Y, Miyamoto T, Miyoki S, Murakami I, Namai Y, Nakano M, Ochi T, Ohashi M, Okutomi K, Saito Y, Shishido T, Shoda A, Somiya K, Suzuki T, Takada S, Takahashi M, Takahashi R, Tanaka H, Terashima S, Tomaru T, Travasso F, Ueda A, Ushiba T, Vocca H, Yamada T, Yamamoto K, Zeidler S (2021) Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Class. Quantum Grav 38:085013

    Article  ADS  Google Scholar 

  170. Hild S, Lück H, Winkler W, Strain K, Grote H, Smith J, Malec M, Hewitson M, Willke B, Hough J, Danzmann K. Measurement of a low-absorption sample of OH-reduced fused silica. Appl Opt 45(28):7269–7272

    Google Scholar 

  171. Schroeter A, Nawrodt R, Schnabel R, Reid S, Martin I, Rowan S, Schwarz C, Koettig T, Neubert R, Thürk M, Vodel W, Tünnermann A, Danzmann K, Seidel P (2007) On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz. ArXiv:0709.4359 [Gr-Qc]

    Google Scholar 

  172. Uchiyama T, Tomaru T, Tobar ME, Tatsumi D, Miyoki S, Ohashi M, Kuroda K, Suzuki T, Sato N, Haruyama T, Yamamoto A, Shintomi T. Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors. Phys Lett A 261(1):5–11

    Google Scholar 

  173. Khalaidovski A, Hofmann G, Chen D, Komma J, Schwarz C, Tokoku C, Kimura N, Suzuki T, Scheie AO, Majorana E, Nawrodt R, Yamamoto K. Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA. Class Quant Grav 31(10):105004

    Google Scholar 

  174. Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermophysical properties of matter – the TPRC data series. Volume 2. Thermal conductivity – nonmetallic solids. (Reannouncement). Data book

    Google Scholar 

  175. Touloukian YS, Kirby RK, Taylor ER, Lee TYR. Thermophysical properties of matter – the TPRC data series. Volume 13. Thermal expansion – nonmetallic solids. (Reannouncement). Data book

    Google Scholar 

  176. Hirose E, Billingsley G, Zhang L, Yamamoto H, Pinard L, Michel C, Forest D, Reichman B, Gross M. Characterization of core optics in gravitational-wave detectors: case study of KAGRA sapphire mirrors. Phys Rev Appl 14(1):014021

    Google Scholar 

  177. Tokunari M, Saito T, Miyoki S, Ohashi M, Kuroda K. Optical properties measurement of an Al 2 O 3 mirror substrate for the Large-Scale Cryogenic Gravitational Wave Telescope (LCGT). Class Quant Grav 27(18):185015

    Google Scholar 

  178. Zeidler S, Leonardi M, Li P. Absorption and Birefringence Measurements on Sapphire

    Google Scholar 

  179. Nawrodt R, Zimmer A, Koettig T, Schwarz C, Heinert D, Hudl M, Neubert R, Thürk M, Nietzsche S, Vodel W, Seidel P, Tünnermann A (2008) High mechanical Q-factor measurements on silicon bulk samples. J Phys Conf Ser 122:012008

    Article  Google Scholar 

  180. Lyon K, Salinger G, Swenson C, White G. Linear thermal-expansion measurements on silicon from 6 to 340 K. J Appl Phys 48(3):865–868

    Google Scholar 

  181. Degallaix J, Flaminio R, Forest D, Granata M, Michel C, Pinard L, Bertrand T, Cagnoli G. Bulk optical absorption of high resistivity silicon at 1550 nm. Opt Lett 38(12):2047–2049

    Google Scholar 

  182. Krüger C, Heinert D, Khalaidovski A, Steinlechner J, Nawrodt R, Schnabel R, Lück H (2016) Birefringence measurements on crystalline silicon. Class Quant Grav 33(1):015012

    Article  ADS  Google Scholar 

  183. Gretarsson AM, Harry GM. Dissipation of mechanical energy in fused silica fibers. Rev Sci Instrum 70(10):4081–4087

    Google Scholar 

  184. Cagnoli G, Willems PA. Effects of nonlinear thermoelastic damping in highly stressed fibers. Phys Rev B 65(17):174111

    Google Scholar 

  185. Cumming A, Heptonstall A, Kumar R, Cunningham W, Torrie C, Barton M, Strain KA, Hough J, Rowan S. Finite element modelling of the mechanical loss of silica suspension fibres for advanced gravitational wave detectors. Class Quant Grav 26(21):215012

    Google Scholar 

  186. Fukuhara M, Sanpei A, Shibuki K. Low temperature-elastic moduli, Debye temperature and internal dilational and shear frictions of fused quartz. J Mater Sci 32(5):1207–1211

    Google Scholar 

  187. Cumming AV, Cunningham L, Hammond GD, Haughian K, Hough J, Kroker S, Martin IW, Nawrodt R, Rowan S, Schwarz C, van Veggel AA. Silicon mirror suspensions for gravitational wave detectors. Class Quant Grav 31(2):025017

    Google Scholar 

  188. Lee BH, Ju L, Blair DG. Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors. Phys Lett A 339(3):217–223

    Google Scholar 

  189. Gretarsson AM, Harry GM, Penn SD, Saulson PR, Startin WJ, Rowan S, Cagnoli G, Hough J. Pendulum mode thermal noise in advanced interferometers: a comparison of fused silica fibers and ribbons in the presence of surface loss. Phys Lett A 270(3):108–114

    Google Scholar 

  190. Hammond GD, Cumming AV, Hough J, Kumar R, Tokmakov K, Reid S, Rowan S. Reducing the suspension thermal noise of advanced gravitational wave detectors. Class Quant Grav 29(12):124009

    Google Scholar 

  191. Elliffe EJ, Bogenstahl J, Deshpande A, Hough J, Killow C, Reid S, Robertson D, Rowan S, Ward H, Cagnoli G. Hydroxide-catalysis bonding for stable optical systems for space. Class Quant Grav 22(10):S257–S267

    Google Scholar 

  192. Cumming AV, Bell AS, Barsotti L, Barton MA, Cagnoli G, Cook D, Cunningham L, Evans M, Hammond GD, Harry GM, Heptonstall A, Hough J, Jones R, Kumar R, Mittleman R, Robertson NA, Rowan S, Shapiro B, Strain KA, Tokmakov K, Torrie C, van Veggel AA. Design and development of the advanced LIGO monolithic fused silica suspension. Class Quant Grav 29(3):035003

    Google Scholar 

  193. Cunningham L, Murray PG, Cumming A, Elliffe EJ, Hammond GD, Haughian K, Hough J, Hendry M, Jones R, Martin IW, Reid S, Rowan S, Scott J, Strain KA, Tokmakov K, Torrie C, van Veggel AA. Re-evaluation of the mechanical loss factor of hydroxide-catalysis bonds and its significance for the next generation of gravitational wave detectors. Phys Lett A 374(39):3993–3998

    Google Scholar 

  194. Heptonstall A, Barton M, Cantley C, Cumming A, Cagnoli G, Hough J, Jones R, Kumar R, Martin I, Rowan S, Torrie C, Zech S. Investigation of mechanical dissipation in CO 2 laser-drawn fused silica fibres and welds. Class Quant Grav 27(3):035013

    Google Scholar 

  195. Kroker S, Nawrodt R. The Einstein telescope. IEEE Instrum Meas Mag 18(3):4–8

    Google Scholar 

  196. Komori K, Enomoto Y, Takeda H, Michimura Y, Somiya K, Ando M, Ballmer SW. Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions. Phys Rev D 97(10):102001

    Google Scholar 

  197. Numata K, Yamamoto K, Ishimoto H, Otsuka S, Kawabe K, Ando M, Tsubono K. Systematic measurement of the intrinsic losses in various kinds of bulk fused silica. Phys Lett A 327(4):263–271

    Google Scholar 

  198. Nawrodt R, Zimmer A, Koettig T, Nietzsche S, Thürk M, Vodel W, Seidel P. High mechanical Q-factor measurements on calcium fluoride at cryogenic temperatures. Eur Phys J Appl Phys 38(1):53–59

    Google Scholar 

  199. Cesarini E, Lorenzini M, Campagna E, Martelli F, Piergiovanni F, Vetrano F, Losurdo G, Cagnoli G (2009) A “gentle” nodal suspension for measurements of the acoustic attenuation in materials. Rev Sci Instrum 80(5):053904

    Article  ADS  Google Scholar 

  200. Numata K, Ando M, Yamamoto K, Otsuka S, Tsubono K. Wide-band direct measurement of thermal fluctuations in an interferometer. Phys Rev Lett 91(26):260602

    Google Scholar 

  201. Black ED, Villar A, Barbary K, Bushmaker A, Heefner J, Kawamura S, Kawazoe F, Matone L, Meidt S, Rao SR, Schulz K, Zhang M, Libbrecht KG. Direct observation of broadband coating thermal noise in a suspended interferometer. Phys Lett A 328(1):1–5

    Google Scholar 

  202. Gras S, Yu H, Yam W, Martynov D, Evans M. Audio-band coating thermal noise measurement for Advanced LIGO with a multimode optical resonator. Phys Rev D 95(2):022001

    Google Scholar 

  203. Gras S, Evans M. Direct measurement of coating thermal noise in optical resonators. Phys Rev D 98(12):122001

    Google Scholar 

  204. Aguiar OD. Past, present and future of the Resonant-Mass gravitational wave detectors. Res Astron Astrophys 11(1):1–42

    Google Scholar 

  205. Tomaru T, Suzuki T, Miyoki S, Uchiyama T, Taylor CT, Yamamoto A, Shintomi T, Ohashi M, Kuroda K. Thermal lensing in cryogenic sapphire substrates. Class Quant Grav 19(7):2045–2049

    Google Scholar 

  206. Komma J, Schwarz C, Hofmann G, Heinert D, Nawrodt R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl Phys Lett 101(4):041905

    Google Scholar 

  207. Hofmann G, Chen D, Bergmann G, Hammond GD, Hanke M, Haughian K, Heinert D, Hough J, Khalaidovski A, Komma J, Lück H, Majorana E, Masso Reid M, Murray PG, Naticchioni L, Nawrodt R, Reid S, Rowan S, Schmidl F, Schwarz C, Seidel P, Suzuki T, Tomaru T, Vine D, Yamamoto K (2015) Indium joints for cryogenic gravitational wave detectors. Class Quant Grav 32(24):245013

    Article  ADS  Google Scholar 

  208. Shapiro B, Adhikari RX, Aguiar O, Bonilla E, Fan D, Gan L, Gomez I, Khandelwal S, Lantz B, MacDonald T, Madden-Fong D. Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories. Cryogenics 81:83–92

    Google Scholar 

  209. Takahashi R, Saito Y, Sato Y, Kubo T, Tomaru T, Tokunari M, Sumiya T, Takasugi K, Naito Y. Application of diamond-like Carbon (DLC) coatings for gravitational wave detectors. Vacuum 73(2):145–148

    Google Scholar 

  210. Akutsu T, Saito Y, Sakakibara Y, Sato Y, Niwa Y, Kimura N, Suzuki T, Yamamoto K, Tokoku C, Koike S, Chen D, Zeidler S, Ikeyama K, Ariyama Y. Vacuum and cryogenic compatible black surface for large optical baffles in advanced gravitational-wave telescopes. Opt Mater Express 6(5):1613–1626

    Google Scholar 

  211. Tomaru T, Tokunari M, Kuroda K, Uchiyama T, Okutomi A, Ohashi M, Kirihara H, Kimura N, Saito Y, Sato N, Shintomi T, Suzuki T, Haruyama T, Miyoki S, Yamamoto K, Yamamoto A. Conduction effect of thermal radiation in a metal shield pipe in a cryostat for a cryogenic interferometric gravitational wave detector. Jpn J Appl Phys 47:1771

    Google Scholar 

  212. Sakakibara Y, Kimura N, Yamamoto K, Suzuki T, Tomaru T, Miyoki S, Uchiyama T, Kuroda K. Calculation of thermal radiation input via funneling through a duct shield with baffles for KAGRA. Class Quant Grav 29(20):205019

    Google Scholar 

  213. Sakakibara Y, Kimura N, Akutsu T, Suzuki T, Kuroda K. Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors. Class Quant Grav 32(15):155011

    Google Scholar 

  214. Tomaru T, Suzuki T, Haruyama T, Shintomi T, Sato N, Yamamoto A, Ikushima Y, Koyama T, Li R. Development of a cryocooler vibration-reduction system for a cryogenic interferometric gravitational wave detector. Class Quant Grav 21(5):S1005–S1008

    Google Scholar 

  215. Yamada T, Tomaru T, Suzuki T, Ushiba T, Kimura N, Takada S, Inoue Y, Kajita T. High performance heat conductor with small spring constant for cryogenic applications

    Google Scholar 

  216. Aso Y, Ando M, Kawabe K, Otsuka S, Tsubono K. Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer. Phys Lett A 327(1):1–8

    Google Scholar 

  217. Dahl K, Heinzel G, Willke B, Strain KA, Goßler S, Danzmann K (2012) Suspension platform interferometer for the AEI 10 m prototype: concept, design and optical layout. Class Quant Grav 29(9):095024

    Article  ADS  Google Scholar 

  218. Zhang W, Robinson JM, Sonderhouse L, Oelker E, Benko C, Hall JL, Legero T, Matei DG, Riehle F, Sterr U, Ye J. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys Rev Lett 119(24):243601

    Google Scholar 

  219. Miyoki S, Tomaru T, Ishitsuka H, Ohashi M, Kuroda K, Tatsumi D, Uchiyama T, Suzuki T, Sato N, Haruyama T, Yamamoto A, Shintomi T. Cryogenic contamination speed for cryogenic laser interferometric gravitational wave detector. Cryogenics 41(5):415–420

    Google Scholar 

  220. Hasegawa K, Akutsu T, Kimura N, Saito Y, Suzuki T, Tomaru T, Ueda A, Miyoki S. Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes. Phys Rev D 99(2):022003

    Google Scholar 

  221. Tanioka S, Hasegawa K, Aso Y. Optical loss study of molecular layer for a cryogenic interferometric gravitational-wave detector. Phys Rev D 102(2):022009

    Google Scholar 

  222. Steinlechner J, Martin IW. Thermal noise from Icy mirrors in gravitational wave detectors. Phys Rev Res 1(1):013008

    Google Scholar 

  223. Carbone L, Aston SM, Cutler RM, Freise A, Greenhalgh J, Heefner J, Hoyland D, Lockerbie NA, Lodhia D, Robertson NA, Speake CC, Strain KA, Vecchio A. Sensors and actuators for the Advanced LIGO mirror suspensions. Class Quant Grav 29(11):115005

    Google Scholar 

  224. Trout SR. Using permanent magnets at low temperatures

    Google Scholar 

  225. Peterson JR (1993) Observations and modeling of seismic background noise. Technical report

    Book  Google Scholar 

  226. Sleeman R, Wettum AV, Trampert J (2006) Three-channel correlation analysis: a new technique to measure instrumental noise of digitizers and seismic sensors. Bull Seismol Soc Am 96:258–271

    Article  Google Scholar 

  227. Zürn W, Widmer R (1995) On noise reduction in vertical seismic records below 2 MHz using local barometric pressure. Geophys Res Lett 22(24):3537–3540

    Article  ADS  Google Scholar 

  228. Matichard F, Lantz B, Mittleman R, Mason K, Kissel J, Abbott B, Biscans S, McIver J, Abbott R, Abbott S, Allwine E, Barnum S, Birch J, Celerier C, Clark D, Coyne D, DeBra D, DeRosa R, Evans M, Foley S, Fritschel P, Giaime JA, Gray C, Grabeel G, Hanson J, Hardham C, Hillard M, Hua W, Kucharczyk C, Landry M, Le Roux A, Lhuillier V, Macleod D, Macinnis M, Mitchell R, O’Reilly B, Ottaway D, Paris H, Pele A, Puma M, Radkins H, Ramet C, Robinson M, Ruet L, Sarin P, Shoemaker D, Stein A, Thomas J, Vargas M, Venkateswara K, Warner J, Wen S (2015) Seismic isolation of advanced LIGO: review of strategy, instrumentation and performance. Class Quant Grav 32(18):185003

    Article  ADS  Google Scholar 

  229. Aston SM, Barton MA, Bell AS, Beveridge N, Bland B, Brummitt AJ, Cagnoli G, Cantley CA, Carbone L, Cumming AV, Cunningham L, Cutler RM, Greenhalgh RJS, Hammond GD, Haughian K, Hayler TM, Heptonstall A, Heefner J, Hoyland D, Hough J, Jones R, Kissel JS, Kumar R, Lockerbie NA, Lodhia D, Martin IW, Murray PG, O’Dell J, Plissi MV, Reid S, Romie J, Robertson NA, Rowan S, Shapiro B, Speake CC, Strain KA, Tokmakov KV, Torrie C, van Veggel AA, Vecchio A, Wilmut I (2012) Update on quadruple suspension design for advanced LIGO. Class Quant Grav 29(23):235004

    Article  ADS  Google Scholar 

  230. Accadia T et al (The Virgo Collaboration) (2011) The seismic superattenuators of the virgo gravitational waves interferometer. J Low Freq Noise Vib Active Control 30(1):63–79

    Google Scholar 

  231. Hirose E, Sekiguchi T, Kumar R, Takahashi R (2014) Update on the development of cryogenic sapphire mirrors and their seismic attenuation system for KAGRA. Class Quant Grav 31(22):224004

    Article  ADS  Google Scholar 

  232. Strain KA, Shapiro BN (2012) Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors. Rev Sci Instrum 83(4):044501

    Article  ADS  Google Scholar 

  233. van Heijningen JV (2020) A fifty-fold improvement of thermal noise limited inertial sensitivity by operating at cryogenic temperatures. J Instrum 15(06):P06034–P06034

    Article  Google Scholar 

  234. Joo K-N, Clark E, Zhang Y, Ellis JD, Guzmán F (2020) A compact high-precision periodic-error-free heterodyne interferometer. J Opt Soc Am A 37(9):B11–B18

    Article  Google Scholar 

  235. Middlemiss RP, Samarelli A, Paul DJ, Hough J, Rowan S, Hammond GD (2016) Measurement of the earth tides with a mems gravimeter. Nature 531(7596):614–617

    Article  ADS  Google Scholar 

  236. Mow-Lowry CM, Martynov D (2019) A 6d interferometric inertial isolation system. Class Quant Grav 36(24):245006

    Article  ADS  Google Scholar 

  237. Venkateswara K, Hagedorn CA, Turner MD, Arp T, Gundlach JH (2014) A high-precision mechanical absolute-rotation sensor. Rev Sci Instrum 85(1):015005

    Article  ADS  Google Scholar 

  238. McCann JJ, Winterflood J, Ju L, Zhao C (2019) A laser walk-off sensor for high-precision low-frequency rotation measurements. Rev Sci Instrum 90(4):045005

    Article  ADS  Google Scholar 

  239. Cooper SJ, Collins CJ, Green AC, Hoyland D, Speake CC, Freise A, Mow-Lowry CM (2018) A compact, large-range interferometer for precision measurement and inertial sensing. Class Quant Grav 35(9):095007

    Article  ADS  Google Scholar 

  240. Aso Y, Ando M, Kawabe K, Otsuka S, Tsubono K (2004) Stabilisation of a fabry-perot interferometer using a suspension-point interferometer. Phys Lett A 327:1–8

    Article  ADS  MATH  Google Scholar 

  241. Köhlenbeck SM (2018) Towards the SQL interferometer: length stabilization at the AEI 10 m-prototype. PhD thesis, Gottfried Wilhelm Leibniz Universität. https://doi.org/10.15488/3567

  242. Mullavey AJ, Slagmolen BJJ, Miller J, Evans M, Fritschel P, Sigg D, Waldman SJ, Shaddock DA, McClelland DE (2012) Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. Opt Express 20(1):81–89

    Article  ADS  Google Scholar 

  243. Staley A, Martynov D, Abbott R, Adhikari RX, Arai K, Ballmer S, Barsotti L, Brooks AF, DeRosa RT, Dwyer S, Effler A, Evans M, Fritschel P, Frolov VV, Gray C, Guido CJ, Gustafson R, Heintze M, Hoak D, Izumi K, Kawabe K, King EJ, Kissel JS, Kokeyama K, Landry M, McClelland DE, Miller J, Mullavey A, OReilly B, Rollins JG, Sanders JR, Schofield RMS, Sigg D, Slagmolen BJJ, Smith-Lefebvre ND, Vajente G, Ward RL, Wipf C (2014) Achieving resonance in the advanced LIGO gravitational-wave interferometer. Class Quant Grav 31(24):245010

    Article  ADS  Google Scholar 

  244. Miller J, Ngo S, Mullavey AJ, Slagmolen BJJ, Shaddock DA, McClelland DE (2012) Control and tuning of a suspended fabry-perot cavity using digitally enhanced heterodyne interferometry. Opt Lett 37(23):4952–4954

    Article  ADS  Google Scholar 

  245. de Vine G, Rabeling DS, Slagmolen BJJ, Lam TT-Y, Chua S, Wuchenich DM, McClelland DE, Shaddock DA (2009) Picometer level displacement metrology with digitally enhanced heterodyne interferometry. Opt Express 17(2):828–837

    Article  ADS  Google Scholar 

  246. Saulson PR (1984) Terrestrial gravitational noise on a gravitational wave antenna. Phys Rev D 30:732–736

    Article  ADS  Google Scholar 

  247. Hughes SA, Thorne KS (1998) Seismic gravity-gradient noise in interferometric gravitational-wave detectors. Phys Rev D 58(12):122002

    Article  ADS  Google Scholar 

  248. Beccaria M et al (1998) Relevance of newtonian seismic noise for the virgo interferometer sensitivity. Class Quant Grav 15(11):3339–3362

    ADS  Google Scholar 

  249. Harms J (2015) Terrestrial gravity fluctuations. Living Rev Relat 18(3):1–150

    ADS  Google Scholar 

  250. McManus DJ, Forsyth PWF, Yap MJ, Ward RL, Shaddock DA, McClelland DE, Slagmolen BJJ (2017) Mechanical characterisation of the torpedo: a low frequency gravitational force sensor. Class Quant Grav 34(13):135002

    Article  ADS  Google Scholar 

  251. Coughlin MW, Harms J, Driggers J, McManus DJ, Mukund N, Ross MP, Slagmolen BJJ, Venkateswara K (2018) Implications of dedicated seismometer measurements on newtonian-noise cancellation for advanced LIGO. Phys Rev Lett 121:221104

    Article  ADS  Google Scholar 

  252. Somiya K (2012) Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector. Class Quant Grav 29(12):124007

    Article  ADS  Google Scholar 

  253. Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H (2013) Interferometer design of the kagra gravitational wave detector. Phys Rev D 88:043007

    Article  ADS  Google Scholar 

  254. Akutsu T et al (The KAGRA Collaboration) (2020) The status of KAGRA underground cryogenic gravitational wave telescope. J Phys Conf Ser 1342:012014

    Google Scholar 

  255. Hirose E, Craig K, Ishitsuka H, Martin IW, Mio N, Moriwaki S, Murray PG, Ohashi M, Rowan S, Sakakibara Y, Suzuki T, Waseda K, Watanabe K, Yamamoto K (2014) Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: toward the KAGRA gravitational wave detector. Phys Rev D 90:102004

    Article  ADS  Google Scholar 

  256. Harms J, Acernese F, Barone F, Bartos I, Beker M, van den Brand JFJ, Christensen N, Coughlin M, DeSalvo R, Dorsher S, Heise J, Kandhasamy S, Mandic V, Márka S, Mueller G, Naticchioni L, O’Keefe T, Rabeling DS, Sajeva A, Trancynger T, Wand V (2010) Characterization of the seismic environment at the sanford underground laboratory, South Dakota. Class Quant Grav 27(22):225011

    Article  ADS  Google Scholar 

  257. Driggers JC, Harms J, Adhikari RX (2012) Subtraction of newtonian noise using optimized sensor arrays. Phys Rev D 86:102001

    Article  ADS  Google Scholar 

  258. Venkateswara K, Hagedorn CA, Gundlach JH, Kissel J, Warner J, Radkins H, Shaffer T, Lantz B, Mittleman R, Matichard F, Schofield R (2017) Subtracting tilt from a horizontal seismometer using a ground-rotation sensor. Bull Seismol Soc Am 107(2):709–717

    Article  Google Scholar 

  259. Harms J, Venkateswara K (2016) Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters. Class Quant Grav 33(23):234001

    Article  ADS  Google Scholar 

  260. Fiorucci D, Harms J, Barsuglia M, Fiori I, Paoletti F (2018) Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. Phys Rev D 97:062003

    Article  ADS  Google Scholar 

  261. Schofield R (2020) First CE meeting, session: facility, vacuum system and Newtonian noise. Technical report. Online Meeting

    Google Scholar 

  262. Ross MP, Venkateswara K, Mow-Lowry C, Cooper S, Warner J, Lantz B, Kissel J, Radkins H, Shaffer T, Mittleman R, Pele A, Gundlach J (2020) Towards windproofing LIGO: reducing the effect of wind-driven floor tilt by using rotation sensors in active seismic isolation. Class Quant Grav 37(18):185018

    Article  ADS  Google Scholar 

  263. Brûlé S, Javelaud EH, Enoch S, Guenneau S (2014) Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 112:133901

    Article  ADS  Google Scholar 

  264. Colombi A, Colquitt D, Roux P, Guenneau S, Craster RV (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6(1):27717

    Article  ADS  Google Scholar 

  265. Kadic M, Bückmann T, Schittny R, Wegener M (2013) Metamaterials beyond electromagnetism. Rep Progress Phys 76(12):126501

    Article  ADS  Google Scholar 

  266. Kadic M, Milton GW, van Hecke M, Wegener M (2019) 3d metamaterials. Nat Rev Phys 1(3):198–210

    Article  Google Scholar 

  267. Roux P, Bindi D, Boxberger T, Colombi A, Cotton F, Douste-Bacque I, Garambois S, Gueguen P, Hillers G, Hollis D, Lecocq T, Pondaven I (2018) Toward seismic metamaterials: the METAFORET project. Seismol Res Lett 89(2A):582–593

    Article  Google Scholar 

  268. Colombi A, Roux P, Guenneau S, Gueguen P, Craster RV (2016) Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci Rep 6(1):19238

    Article  ADS  Google Scholar 

  269. Palermo A, Krödel S, Marzani A, Daraio C (2016) Engineered metabarrier as shield from seismic surface waves. Sci Rep 6(1):39356

    Article  ADS  Google Scholar 

  270. Ward RL, Adhikari R, Abbott B, Abbott R, Barron D, Bork R, Fricke T, Frolov V, Heefner J, Ivanov A, Miyakawa O, McKenzie K, Slagmolen B, Smith M, Taylor R, Vass S, Waldman S, Weinstein A (2008) dc readout experiment at the caltech 40m prototype interferometer. Class Quant Grav 25(11):114030

    Google Scholar 

  271. Westphal T, Bergmann G, Bertolini A, Born M, Chen Y, Cumming AV, Cunningham L, Dahl K, Gräf C, Hammond G, Heinzel G, Hild S, Huttner S, Jones R, Kawazoe F, Köhlenbeck S, Kühn G, Lück H, Mossavi K, Pöld JH, Somiya K, van Veggel AM, Wanner A, Willke B, Strain KA, Goßler S, Danzmann K (2012) Design of the 10 m aei prototype facility for interferometry studies. Appl Phys B 106(3):551–557

    Article  ADS  Google Scholar 

  272. Junker J, Oppermann P, Willke B (2017) Shot-noise-limited laser power stabilization for the AEI 10m prototype interferometer. Opt Lett 42(4):755–758

    Article  ADS  Google Scholar 

  273. Dahl K, Heinzel G, Willke B, Strain KA, Goßler S, Danzmann K (2012) Suspension platform interferometer for the AEI 10 m prototype: concept, design and optical layout. Class Quant Grav 29(9):095024

    Article  ADS  Google Scholar 

  274. Zhao C, Blair DG, Barrigo P, Degallaix J, Dumas J-C, Fan Y, Gras S, Ju L, Lee B, Schediwy S, Yan Z, McClelland DE, Scott SM, Gray MB, Searle AC, Gossler S, Slagmolen BJJ, Dickson J, McKenzie K, Mow-Lowry C, Moylan A, Rabeling D, Cumpston J, Wette K, Munch J, Veitch PJ, Mudge D, Brooks A, Hosken D (2006) Gingin high optical power test facility. J Phys Conf Ser 32:368–373

    Article  ADS  Google Scholar 

  275. Barsotti L, Evans M, Fritschel P (2010) Alignment sensing and control in advanced LIGO. Class Quant Grav 27(8):084026

    Article  ADS  MathSciNet  Google Scholar 

  276. Dylla HF, Weiss R, Zucker ME (2019) Proceedings: Nsf workshop on large ultrahigh-vacuum systems for frontier scientific research. Technical Report LIGO-P1900072-v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ward, R.L., Slagmolen, B.J.J., Aso, Y. (2022). Research and Development for Third-Generation Gravitational Wave Detectors. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_8

Download citation

Publish with us

Policies and ethics