Skip to main content

Detection Landscape in the deci-Hertz Gravitational-Wave Spectrum

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1318 Accesses

Abstract

Direct observations of gravitational waves at frequencies around deci-Hertz will play a crucial role in fully exploiting the potential of multi-messenger astronomy. In this chapter, we discuss the detection landscape for the next several decades of the deci-Hertz gravitational-wave spectrum. We provide an overview of the experimental frontiers being considered to probe this challenging regime and the astrophysics and fundamental goals accessible toward them. This includes interferometric observatories in space with heliocentric and geocentric satellites, cubesats, lunar-based experiments, and atom interferometry. A major focus of this chapter is toward the technology behind DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) and its scientific pathfinder mission concept B-DECIGO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasi J et al (LIGO Scientific) (2015) Class Quant Grav 32:074001 (Preprint 1411.4547)

    Google Scholar 

  2. Acernese F et al (Virgo) (2015) Class Quant Grav 32:024001 (Preprint 1408.3978)

    Google Scholar 

  3. Akutsu T et al (KAGRA) (2019) Nat Astron 3:35–40 (Preprint 1811.08079)

    Google Scholar 

  4. Abbott BP et al (KAGRA, LIGO Scientific, Virgo) (2018) Living Rev Rel 21:3 (Preprint 1304.0670)

    Google Scholar 

  5. Punturo M et al (2010) Class Quant Grav 27:194002

    Article  ADS  Google Scholar 

  6. Reitze D et al (2019) Bull Am Astron Soc 51:35 (Preprint 1907.04833)

    Google Scholar 

  7. Jani K, Shoemaker D, Cutler C (2019) Nat Astron 4:260–265 (Preprint 1908.04985)

    Google Scholar 

  8. Amaro-Seoane P et al (LISA) (2017) (Preprint 1702.00786)

    Google Scholar 

  9. Manchester RN (2013) Class Quant Grav 30:224010 (Preprint 1309.7392)

    Google Scholar 

  10. Mingarelli CMF (2019) (Preprint 1901.06785)

    Google Scholar 

  11. Sedda MA et al (2020) Class Quant Grav 37:215011 (Preprint 1908.11375)

    Google Scholar 

  12. Mandel I, Sesana A, Vecchio A (2018) Class Quant Grav 35:054004 (Preprint 1710.11187)

    Google Scholar 

  13. Greene JE, Strader J, Ho LC (2020) 58:257–312 (Preprint 1911.09678)

    Google Scholar 

  14. Bellovary J, Brooks A, Colpi M, Eracleous M, Holley-Bockelmann K, Hornschemeier A, Mayer L, Natarajan P, Slutsky J, Tremmel M (2019) (Preprint 1903.08144)

    Google Scholar 

  15. Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C, Agathos M, et al (2020) Phys Rev Lett 125 ISSN 1079-7114. https://doi.org/10.1103/PhysRevLett.125.101102

  16. Peters PC (1964) Phys Rev 136:B1224–B1232

    Article  ADS  Google Scholar 

  17. Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Mon Not R Astron Soc 460:3494–3504 (Preprint 1603.02709)

    Google Scholar 

  18. Rodriguez CL, Zevin M, Pankow C, Kalogera V, Rasio FA (2016) Astrophys J 832:L2 (Preprint 1609.05916)

    Google Scholar 

  19. Sesana A (2016) Phys Rev Lett 116:231102 (Preprint 1602.06951)

    Google Scholar 

  20. Cutler C et al (2019) Bull Am Astron Soc 51:109 (Preprint 1903.04069)

    Google Scholar 

  21. Isoyama S, Nakano H, Nakamura T (2018) PTEP 2018:073E01 (Preprint 1802.06977)

    Google Scholar 

  22. Jani K, Loeb A (2020) arXiv e-prints arXiv:2007.08550 (Preprint 2007.08550)

    Google Scholar 

  23. Toonen S, Nelemans G, Portegies Zwart S (2012) Astron Astrophys 546:A70 (Preprint 1208.6446)

    Google Scholar 

  24. Harms J et al (2021) Astrophys J 910:1 (Preprint 2010.13726)

    Google Scholar 

  25. Vartanyan D, Burrows A (2020) (Preprint 2007.07261)

    Google Scholar 

  26. Kawamura S et al (2011) Class Quant Grav 28:094011

    Article  ADS  Google Scholar 

  27. Baibhav V et al (2019) (Preprint 1908.11390)

    Google Scholar 

  28. Hu WR, Wu YL (2017) Natl Sci Rev 4:685–686

    Article  Google Scholar 

  29. Bender PL, Begelman MC, Gair JR (2013) Class Quant Grav 30:165017

    Article  ADS  Google Scholar 

  30. Mueller G, Baker J et al (2019) Bull Am Astron Soc 51:243 (Preprint 1907.11305)

    Google Scholar 

  31. Lacour S et al (2019) Class Quant Grav 36:195005 (Preprint 1811.04743)

    Google Scholar 

  32. Tinto M, de Araujo JCN, Aguiar OD, da Silva Alves ME (2011) (Preprint 1111.2576)

    Google Scholar 

  33. McWilliams ST (2011) (Preprint 1111.3708)

    Google Scholar 

  34. Katsanevas S et al (2020) Ideas for exploring the Moon with a large European lander (ESA). https://ideas.esa.int/servlet/hype/IMT?documentTableId=45087648406411583&userAction=Browse&templateName=&documentId=a315450fae481074411ef65e4c5b7746

    Google Scholar 

  35. Graham PW, Hogan JM, Kasevich MA, Rajendran S, Romani RW (MAGIS) (2017) (Preprint 1711.02225)

    Google Scholar 

  36. El-Neaj YA et al (AEDGE) (2020) EPJ Quant Technol 7:6 (Preprint 1908.00802)

    Google Scholar 

  37. Kolkowitz S, Pikovski I, Langellier N, Lukin MD, Walsworth RL, Ye J (2016) Phys Rev D94:124043 (Preprint 1606.01859)

    Google Scholar 

  38. Seto N, Kawamura S, Nakamura T (2001) Phys Rev Lett 87:221103 (Preprint astro-ph/0108011)

    Google Scholar 

  39. Kawamura S, Nakamura T, Ando M, Seto N, Tsubono K et al (2006) Class Quan Grav 23:S125–S131. https://doi.org/10.1088/0264-9381/23/8/S17

    Article  Google Scholar 

  40. Kawamura S et al (2020) (Preprint 2006.13545)

    Google Scholar 

  41. Kawamura S, Nakamura T, Ando M, Seto N, Akutsu T et al (2019) Int J Modern Phys D 28:1845001 (Preprint). https://doi.org/10.1142/S0218271818450013

  42. Grishchuk LP (1993) Class Quan Grav 10:2449–2477. https://doi.org/10.1088/0264-9381/10/12/006

    Article  MathSciNet  ADS  Google Scholar 

  43. Kuroyanagi S, Chiba T, Sugiyama N (2009) Phys Rev D 79(10):103501. https://doi.org/10.1103/PhysRevD.79.103501

    Article  ADS  Google Scholar 

  44. Yagi K, Tanaka T (2010) Prog Theor Phys 123:1069–1078. ISSN 0033-068X (Preprint https://academic.oup.com/ptp/article-pdf/123/6/1069/5373653/123-6-1069.pdf) https://doi.org/10.1143/PTP.123.1069

  45. Nishizawa A, Taruya A, Kawamura S (2010) Phys Rev D 81(10):104043. https://doi.org/10.1103/PhysRevD.81.104043

    Article  ADS  Google Scholar 

  46. Seto N (2007) Phys Rev D 75(6):061302. https://doi.org/10.1103/PhysRevD.75.061302

    Article  MathSciNet  ADS  Google Scholar 

  47. Kakizaki M, Kanemura S, Matsui T (2015) Phys Rev D92:115007 (Preprint 1509.08394)

    Google Scholar 

  48. Dror JA, Hiramatsu T, Kohri K, Murayama H, White G (2020) Phys Rev Lett 124(4):041804. https://doi.org/10.1103/PhysRevLett.124.041804

    Article  ADS  Google Scholar 

  49. Nakamura T, Ando M, Kinugawa T, Nakano H, Eda K, Sato S, Musha M, Akutsu T, Tanaka T, Seto N, Kanda N, Itoh Y (2016) Prog Theoretical Exp Phys 2016. ISSN 2050-3911 093E01 (Preprint https://academic.oup.com/ptep/article-pdf/2016/9/093E01/9621962/ptw127.pdf). https://doi.org/10.1093/ptep/ptw127

  50. Musha M, Akami K, Suemasa A (2019) Novel satellite positioning system using acousto-optic deflector. In: Sodnik Z, Karafolas N, Cugny B (eds) International conference on space optics – ICSO 2018 vol 11180 ed International Society for Optics and Photonics (SPIE) pp 1589–1596. https://doi.org/10.1117/12.2536073

  51. Nagano K, Takeda H, Michimura Y, Uchiyama T, Ando M (2020) Classical and Quantum Gravity 38:085018. https://doi.org/10.1088/1361-6382/abed60

    Article  ADS  Google Scholar 

  52. Izumi K, Fujimoto MK (2020) Prog Theoretical Exp Phys 2021:7 073F01. https://doi.org/10.1093/ptep/ptab067

  53. Yamada R, Enomoto Y, Nishizawa A, Nagano K, Kuroyanagi S, Kokeyama K, Komori K, Michimura Y, Naito T, Watanabe I, Morimoto T, Ando M, Furusawa A, Kawamura S (2020) Phys Lett A 384:126626. ISSN 0375-9601 https://doi.org/10.1016/j.physleta.2020.126626

  54. Stebbins RT, Bender PL (1990) AIP Conf Proc 202:188–204 (Preprint) https://aip.scitation.org/doi/abs/10.1063/1.39103

  55. Weber J (1960) Phys Rev 117(1):306–313. https://link.aps.org/doi/10.1103/PhysRev.117.306

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiwamu Izumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Izumi, K., Jani, K. (2022). Detection Landscape in the deci-Hertz Gravitational-Wave Spectrum. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_50

Download citation

Publish with us

Policies and ethics