Skip to main content

Quantum Sensors with Matter Waves for GW Observation

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Quantum sensors exploiting matter waves interferometry promise the realization of a new generation of gravitational wave detectors. The intrinsic stability of specific atomic energy levels makes atom interferometers and clocks ideal candidates to extend the frequency window for the observation of gravitational waves in the mid-frequency band, ranging from 10 mHz to 10 Hz. We present the geometry and functioning of this new class of ground and space detectors and detail their main noise sources. We describe the different projects undertaken worldwide to realize large-scale demonstrators and push further the current limitations. We finally give the roadmap for achieving the instrumental sensitivity required to seize the scientific opportunities offered by this new research domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott R et al GW190521: A binary black hole merger with a total mass of 150 M. Phys Rev Lett 125(10):2020. https://doi.org/10.1103/physrevlett.125.101102

  2. Mandel I, Sesana A, Vecchio A (2018) The astrophysical science case for a decihertz gravitational-wave detector. Class Quantum Grav 35:054004. https://doi.org/10.1088/1361-6382/aaa7e0

    Article  ADS  Google Scholar 

  3. Nielsen HB, Olesen P (1973) Vortex-line models for dual strings. Nucl Phys B 61:45–61. https://doi.org/10.1016/0550-3213(73)90350-7

    Article  ADS  Google Scholar 

  4. Weir DJ (2018) Gravitational waves from a first-order electroweak phase transition: a brief review. Philos Trans R Soc A 376(2114):20170126. https://doi.org/10.1098/rsta.2017.0126

    Article  ADS  MATH  Google Scholar 

  5. Aasi J et al (2015) Advanced LIGO. Class Quantum Grav 32(7):074001. https://doi.org/10.1088/0264-9381/32/7/074001

    Article  ADS  Google Scholar 

  6. Acernese F et al (2014) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32(2):024001. https://doi.org/10.1088/0264-9381/32/2/024001

    Article  ADS  Google Scholar 

  7. Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:4. https://doi.org/10.1103/physrevlett.116.231102

    Article  Google Scholar 

  8. Punturo M et al (2010) The Einstein Telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27(19):194002. https://doi.org/10.1088/0264-9381/27/19/194002

    Article  ADS  Google Scholar 

  9. Abbott BP et al (2017) Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav 34(4):044001. https://doi.org/10.1088/1361-6382/aa51f4

    Article  ADS  Google Scholar 

  10. Jennrich O (2009) LISA technology and instrumentation. Class Quantum Grav 26(15):153001. https://doi.org/10.1088/0264-9381/26/15/153001

    Article  ADS  MATH  Google Scholar 

  11. Kuns KA, Yu H, Chen Y, Adhikari RX (2020) Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO. Phys Rev D 102(4):043001. https://doi.org/10.1103/PhysRevD.102.043001

    Article  ADS  Google Scholar 

  12. Sedda MA, Berry CPL, Jani K, Amaro-Seoane P, Auclair P, Baird J, Baker T, Berti E, Breivik K, Burrows A, Caprini C, Chen X, Doneva D, Ezquiaga JM, Saavik Ford KE, Katz ML, Kolkowitz S, McKernan B, Mueller G, Nardini G, Pikovski I, Rajendran S, Sesana A, Shao L, Tamanini N, Vartanyan D, Warburton N, Witek H, Wong K, Zevin M (2020) The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Class Quantum Grav 37(21):215011. https://doi.org/10.1088/1361-6382/abb5c1

    Article  ADS  Google Scholar 

  13. El-Neaj YA, Alpigiani C, Amairi-Pyka S, Araújo H, Balaž A, Bassi A, Bathe-Peters L, Battelier B, Belić A, Bentine E, Bernabeu J, Bertoldi A, Bingham R, Blas D, Bolpasi V, Bongs K, Bose S, Bouyer P, Bowcock T, Bowden W, Buchmueller O, Burrage C, Calmet X, Canuel B, Caramete L-I, Carroll A, Cella G, Charmandaris V, Chattopadhyay S, Chen X, Maria Chiofalo L, Coleman J, Cotter J, Cui Y, Derevianko A, De Roeck A, Djordjevic GS, Dornan P, Doser M, Drougkakis I, Dunningham J, Ioana Dutan, Easo S, Elertas G, Ellis J, Sawy MEl, Fassi F, Felea D, Feng C-H, Flack R, Foot C, Fuentes I, Gaaloul N, Gauguet A, Geiger R, Gibson V, Giudice G, Goldwin J, Grachov O, Graham PW, Grasso D, van der Grinten M, Gündogan M, Haehnelt MG, Harte T, Hees A, Hobson R, Hogan J, Holst B, Holynski M, Kasevich M, Kavanagh BJ, von Klitzing W, Kovachy T, Krikler B, Krutzik M, Lewicki M, Lien Y-H, Liu M, Luciano GG, Magnon A, Mahmoud MA, Malik S, McCabe C, Mitchell J, Pahl J, Pal D, Pandey S, Papazoglou D, Paternostro M, Penning B, Peters A, Prevedelli M, Puthiya-Veettil V, Quenby J, Rasel E, Ravenhall S, Ringwood J, Roura A, Sabulsky D, Sameed M, Sauer B, Schäffer SA, Schiller S, Schkolnik V, Schlippert D, Schubert C, Sfar HR, Shayeghi A, Shipsey I, Signorini C, Singh Y, Soares-Santos M, Sorrentino F, Sumner T, Tassis K, Tentindo S, Tino GM, Tinsley JN, Unwin J, Valenzuela T, Vasilakis G, Vaskonen V, Vogt C, Webber-Date A, Wenzlawski A, Windpassinger P, Woltmann M, Yazgan E, Zhan M-S, Zou X, Zupan J (2020) AEDGE: atomic experiment for dark matter and gravity exploration in space. EPJ Quan Technol 7(1). https://doi.org/10.1140/epjqt/s40507-020-0080-0

  14. Dimopoulos S, Graham PW, Hogan JM, Kasevich MA (2008a) General relativistic effects in atom interferometry. Phys Rev D 78. ISSN 15507998. https://doi.org/10.1103/PhysRevD.78.042003

  15. Canuel B, Abend S, Amaro-Seoane P, Badaracco F, Beaufils Q, Bertoldi A, Bongs K, Bouyer P, Braxmaier C, Chaibi W, Christensen N, Fitzek F, Flouris G, Gaaloul N, Gaffet S, Garrido Alzar CL, Geiger R, Guellati-Khelifa S, Hammerer K, Harms J, Hinderer J, Holynski M, Junca J, Katsanevas S, Klempt C, Kozanitis C, Krutzik M, Landragin A, Roche I, Leykauf B, Lien Y-H, Loriani S, Merlet S, Merzougui M, Nofrarias M, Papadakos P, dos Santos FP, Peters A, Plexousakis D, Prevedelli M, Rasel EM, Rogister Y, Rosat S, Roura A, Sabulsky D, Schkolnik V, Schlippert D, Schubert C, Sidorenkov L, Siemss J-N, Sopuerta C, Sorrentino F, Struckmann C, Tino GM, Tsagkatakis G, Viceré A, von Klitzing W, Woerner L, Zou X (2020a) ELGAR – a European Laboratory for Gravitation and Atom-interferometric Research. Class Quantum Grav. https://doi.org/10.1088/1361-6382/aba80e

    Book  Google Scholar 

  16. Kolkowitz S, Pikovski I, Langellier N, Lukin MD, Walsworth RL, Ye J (2016) Gravitational wave detection with optical lattice atomic clocks. Phys Rev D 94(12). https://doi.org/10.1103/physrevd.94.124043

  17. Rudolph J, Wilkason T, Nantel M, Swan H, Holland CM, Jiang Y, Garber BE, Carman SP, Hogan JM (2020) Large momentum transfer clock atom interferometry on the 689 nm intercombination line of strontium. Phys Rev Lett 124(8). https://doi.org/10.1103/physrevlett.124.083604

  18. Hong T, Cramer C, Nagourney W, Fortson EN (2005) Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms. Phys Rev Lett 94(5):050801. https://doi.org/10.1103/physrevlett.94.050801

    Article  ADS  Google Scholar 

  19. Katori H, Takamoto M, Pal’chikov VG, Ovsiannikov VD (2003) Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys Rev Lett 91(17):173005. https://doi.org/10.1103/physrevlett.91.173005

    Article  ADS  Google Scholar 

  20. Jiang YY, Ludlow AD, Lemke ND, Fox RW, Sherman JA, Ma L-S, Oates CW (2011) Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat Photon 5(3):158–161. https://doi.org/10.1038/nphoton.2010.313

    Article  ADS  Google Scholar 

  21. Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO (2015) Optical atomic clocks. Rev Mod Phys 87. ISSN 15390756. https://doi.org/10.1103/RevModPhys.87.637

  22. Beloy K, Bodine MI, Bothwell T, Brewer SM, Bromley SL, Chen J-S, Deschênes J-D, Diddams SA, Fasano RJ, Fortier TM, Hassan YS, Hume DB, Kedar D, Kennedy CJ, Khader I, Koepke A, Leibrandt DR, Leopardi H, Ludlow AD, McGrew WF, Milner WR, Newbury NR, Nicolodi D, Oelker E, Parker TE, Robinson JM, Romisch S, Schäffer SA, Sherman JA, Sinclair LC, Sonderhouse L, Swann WC, Yao J, Ye J, Zhang X (2020) Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591:564–569. https://doi.org/10.1038/s41586-021-03253-4

    ADS  Google Scholar 

  23. Diddams SA, Vahala K, Udem T (2020) Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369(6501). ISSN 0036-8075. https://doi.org/10.1126/science.aay3676

  24. Mackenzie D (2020) Time gets more precise with transportable optical lattice clocks. Engineering. https://doi.org/10.1016/j.eng.2020.08.008

    Book  Google Scholar 

  25. Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H (2020) Test of general relativity by a pair of transportable optical lattice clocks. Nat Photonics 14. ISSN 17494893. https://doi.org/10.1038/s41566-020-0619-8

  26. Hollberg L, Cornell EH, Abdelrahmann A (2017) Optical atomic phase reference and timing. Philos Trans R Soc A 375(2099):20160241. https://doi.org/10.1098/rsta.2016.0241

    Article  Google Scholar 

  27. Barrett B, Gominet PA, Cantin E, Antoni-Micollier L, Bertoldi A, Battelier B, Bouyer P, Lautier J, Landragin A (2014) Mobile and remote inertial sensing with atom interferometers. Proc Int School Phys Enrico Fermi 188:493–555. ISSN 0074-784X. https://doi.org/10.3254/978-1-61499-448-0-493. Atom Interferometry

  28. Geiger R, Landragin A, Merlet S, Pereira Dos Santos F (2020) High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Sci 2:024702, 6. ISSN 2639-0213. http://avs.scitation.org/doi/10.1116/5.0009093

  29. Peters A, Chung KY, Chu S (1999) Measurement of gravitational acceleration by dropping atoms. Nature 400. ISSN 00280836. https://doi.org/10.1038/23655

  30. Snadden MJ, Mc Guirk JM, Bouyer P, Haritos KG, Kasevich MA (1998) Measurement of the earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys Rev Lett 81. ISSN 10797114. https://doi.org/10.1103/PhysRevLett.81.971

  31. Gustavson TL, Bouyer P, Kasevich MA (1997) Precision rotation measurements with an atom interferometer gyroscope. Phys Rev Lett 78. ISSN 10797114. https://doi.org/10.1103/PhysRevLett.78.2046

  32. Tino GM, Kasevich MA (2014) Atom interferometry. Società Italiana di Fisica and IOS Press, Amsterdam. ISBN 978-1614994473

    Google Scholar 

  33. Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich WP, Roura A (2019) Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys 1. ISSN 25225820. https://doi.org/10.1038/s42254-019-0117-4

  34. Lorek D, Lämmerzahl C, Wicht A (2012) A new type of atom interferometry for testing fundamental physics. In: Proceedings of the 12th Marcel Grossmann meeting on general relativity, Singapore. World Scientific. https://doi.org/10.1142/9789814374552_0252

  35. Tino GM (2019) Gravitational physics with atomic quantum sensors. In: 2019 conference on lasers and electro-optics Europe & European quantum electronics conference (CLEO/Europe-EQEC), Munich. IEEE. https://doi.org/10.1109/cleoe-eqec.2019.8872784

  36. Schlippert D, Meiners C, Rengelink RJ, Schubert C, Tell D, Wodey E, Zipfel KH, Ertmer W, Rasel EM (2020) Matter-wave interferometry for inertial sensing and tests of fundamental physics. In: CPT and Lorentz Symmetry, pp 37–40, Singapore. WORLD SCIENTIFIC. https://doi.org/10.1142/9789811213984_0010

  37. Burrage C, Copeland EJ, Hinds EA (2015) Probing dark energy with atom interferometry. J Cosmol Astropart Phys (03):042–042. https://doi.org/10.1088/1475-7516/2015/03/042

    Article  ADS  Google Scholar 

  38. Antoine C, Bordé CJ (2003) Quantum theory of atomic clocks and gravito-inertial sensors: an update. J Opt B Quantum Semiclassical Opt 5(2):S199–S207. https://doi.org/10.1088/1464-4266/5/2/380

    Article  ADS  Google Scholar 

  39. Wolf P, Blanchet L, Bordé CJ, Reynaud S, Salomon C, Cohen-Tannoudji C (2011) Does an atom interferometer test the gravitational redshift at the Compton frequency? Class Quan Grav 28. ISSN 02649381. https://doi.org/10.1088/0264-9381/28/14/145017

  40. Chiao RY, Speliotopoulos AD (2003) Quantum interference to measure spacetime curvature: a proposed experiment at the intersection of quantum mechanics and general relativity. Int J Mod Phys D 12. ISSN 02182718. https://doi.org/10.1142/S0218271803003943

  41. Graham PW, Hogan JM, Kasevich MA, Rajendran S (2013) New method for gravitational wave detection with atomic sensors. Phys Rev Lett 110(17) https://doi.org/10.1103/physrevlett.110.171102

  42. Canuel B, Bertoldi A, Amand L, di Borgo EP, Chantrait T, Danquigny C, Dovale Álvarez M, Fang B, Freise A, Geiger R, Gillot J, Henry S, Hinderer J, Holleville D, Junca J, Lefèvre G, Merzougui M, Mielec N, Monfret T, Pelisson S, Prevedelli M, Reynaud S, Riou I, Rogister Y, Rosat S, Cormier E, Landragin A, Chaibi W, Gaffet S, Bouyer P (2018) Exploring gravity with the MIGA large scale atom interferometer. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-32165-z

  43. Coleman J et al (2019) MAGIS-100 at Fermilab. In: Proceedings of the 39th international conference on high energy physics — PoS(ICHEP2018), Trieste. Sissa Medialab. https://doi.org/10.22323/1.340.0021

  44. Chen YJ, Hansen A, Hoth GW, Ivanov E, Pelle B, Kitching J, Donley EA (2019) Single-source multiaxis cold-atom interferometer in a centimeter-scale cell. Phys Rev Appl 12. ISSN 23317019. https://doi.org/10.1103/PhysRevApplied.12.014019

  45. Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P (2016) Dual matter-wave inertial sensors in weightlessness. Nat Commun 7(1). https://doi.org/10.1038/ncomms13786

  46. Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B (2018) Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-30608-1

  47. Kasevich M, Chu S (1991) Atomic interferometry using stimulated Raman transitions. Phys Rev Lett 67. ISSN 00319007. https://doi.org/10.1103/PhysRevLett.67.181

  48. Bertoldi A, Lamporesi G, Cacciapuoti L, De Angelis M, Fattori M, Petelski T, Peters A, Prevedelli M, Stuhler J, Tino GM (2006) Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G. Eur Phys J D 40. ISSN 14346060. https://doi.org/10.1140/epjd/e2006-00212-2

  49. Fixler JB, Foster GT, McGuirk JM, Kasevich MA (2007) Atom interferometer measurement of the Newtonian constant of gravity. Science 315. ISSN 00368075. https://doi.org/10.1126/science.1135459

  50. Lamporesi G, Bertoldi A, Cacciapuoti L, Prevedelli M, Tino GM (2008) Determination of the Newtonian gravitational constant using atom interferometry. Phys Rev Lett 100. ISSN 00319007. https://doi.org/10.1103/PhysRevLett.100.050801

  51. Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino GM (2014) Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510:518–521. https://doi.org/10.1038/nature13433

    Article  ADS  Google Scholar 

  52. Asenbaum P, Overstreet C, Kovachy T, Brown DD, Hogan JM, Kasevich MA (2017) Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys Rev Lett 118. ISSN 10797114. https://doi.org/10.1103/PhysRevLett.118.183602

  53. Delva P, Angonin MC, Tourrenc P (2007) Matter waves and the detection of gravitational waves. J Phys Conf Ser 66. ISSN 17426596. https://doi.org/10.1088/1742-6596/66/1/012050

  54. Harms J (2015) Terrestrial gravity fluctuations. Living Rev Rel 18:3. https://doi.org/10.1007/lrr-2015-3

    Article  Google Scholar 

  55. Chaibi W, Geiger R, Canuel B, Bertoldi A, Landragin A, Bouyer P (2016) Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys Rev D 93(2):021101. https://doi.org/10.1103/physrevd.93.021101

    Article  ADS  Google Scholar 

  56. Aasi J et al (2013) Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat Photonics 7(8):613–619. https://doi.org/10.1038/nphoton.2013.177

    Article  ADS  Google Scholar 

  57. Akutsu T et al (2018) Construction of KAGRA: an underground gravitational-wave observatory. Progr Theor Exp Phys 2018(1):01. ISSN 2050-3911. https://doi.org/10.1093/ptep/ptx180. 013F01

  58. Su J, Wang Q, Wang Q, Jetzer P (2018) Low-frequency gravitational wave detection via double optical clocks in space. Class Quan Grav 35. ISSN 13616382. https://doi.org/10.1088/1361-6382/aab2eb

  59. Dimopoulos S, Graham PW, Hogan JM, Kasevich MA, Rajendran S (2008b) Atomic gravitational wave interferometric sensor. Phys Rev D 78(12). https://doi.org/10.1103/physrevd.78.122002

  60. Graham PW, Hogan JM, Kasevich MA, Rajendran S (2016) Resonant mode for gravitational wave detectors based on atom interferometry. Phys Rev D 94(10). https://doi.org/10.1103/physrevd.94.104022

  61. Giltner DM, McGowan RW, Lee SA (1995) Atom interferometer based on Bragg scattering from standing light waves. Phys Rev Lett 75(14):2638. https://doi.org/10.1103/PhysRevLett.75.2638

    Article  ADS  Google Scholar 

  62. Biedermann GW, Takase K, Wu X, Deslauriers L, Roy S, Kasevich MA (2013) Zero-dead-time operation of interleaved atomic clocks. Phys Rev Lett 111(17). https://doi.org/10.1103/physrevlett.111.170802

  63. Savoie D, Altorio M, Fang B, Sidorenkov LA, Geiger R, Landragin A (2018) Interleaved atom interferometry for high-sensitivity inertial measurements. Sci Adv 4. ISSN 23752548. https://doi.org/10.1126/sciadv.aau7948

  64. Santra R, Christ KV, Greene CH (2004) Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential. Phys Rev A 69(4). https://doi.org/10.1103/physreva.69.042510

  65. Hu L, Poli N, Salvi L, Tino GM (2017) Atom interferometry with the Sr optical clock transition. Phys Rev Lett 119. ISSN 10797114. https://doi.org/10.1103/PhysRevLett.119.263601

  66. Hu L, Wang E, Salvi L, Tinsley JN, Tino GM, Poli N (2020) Sr atom interferometry with the optical clock transition as a gravimeter and a gravity gradiometer. Class Quan Grav 37. ISSN 13616382. https://doi.org/10.1088/1361-6382/ab4d18

  67. Tino GM, Bassi A, Bianco G, Bongs K, Bouyer P, Cacciapuoti L, Capozziello S, Chen X, Chiofalo ML, Derevianko A, Ertmer W, Gaaloul N, Gill P, Graham PW, Hogan JM, Iess L, Kasevich MA, Katori H, Klempt C, Lu X, Ma L-S, Müller H, Newbury NR, Oates CW, Peters A, Poli N, Rasel EM, Rosi G, Roura A, Salomon C, Schiller S, Schleich W, Schlippert D, Schreck F, Schubert C, Sorrentino F, Sterr U, Thomsen JW, Vallone G, Vetrano F, Villoresi P, von Klitzing W, Wilkowski D, Wolf P, Ye J, Yu N, Zhan M (2019) SAGE: a proposal for a Space Atomic Gravity Explorer. Eur Phys J D 73(11). https://doi.org/10.1140/epjd/e2019-100324-6

  68. Hogan JM, Johnson DMS, Dickerson S, Kovachy T, Sugarbaker A, wey Chiow S, Graham PW, Kasevich MA, Saif B, Rajendran S, Bouyer P, Seery BD, Feinberg L, Keski-Kuha R (2011) An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen Relativ Gravit 43. ISSN 00017701. https://doi.org/10.1007/s10714-011-1182-x

  69. Hogan JM, Kasevich MA (2016) Atom-interferometric gravitational-wave detection using heterodyne laser links. Phys Rev A, 94. ISSN 24699934. https://doi.org/10.1103/PhysRevA.94.033632

  70. Norcia MA, Cline JRK, Thompson JK (2017) Role of atoms in atomic gravitational-wave detectors. Phys Rev A 96(4). https://doi.org/10.1103/physreva.96.042118

  71. Adamson P, Chattopadhyay S, Coleman J, Graham P, Geer S, Harnik R, Hahn S, Hogan J, Kasevich M, Kovachy T, Mitchell J, Plunkett R, Rajendran S, Vaerio L, Vaspmos A (2018) PROPOSAL: P-1101 matter-wave atomic gradiometer interferometric sensor (MAGIS-100). Technical report, U.S. Department of Energy, United States

    Google Scholar 

  72. Badurina L, Bentine E, Blas D, Bongs K, Bortoletto D, Bowcock T, Bridges K, Bowden W, Buchmueller O, Burrage C, Coleman J, Elertas G, Ellis J, Foot C, Gibson V, Haehnelt MG, Harte T, Hedges S, Hobson R, Holynski M, Jones T, Langlois M, Lellouch S, Lewicki M, Maiolino R, Majewski P, Malik S, March-Russell J, McCabe C, Newbold D, Sauer B, Schneider U, Shipsey I, Singh Y, Uchida MA, Valenzuela T, van der Grinten M, Vaskonen V, Vossebeld J, Weatherill D, Wilmut I (2020) AION: an atom interferometer observatory and network. J Cosmol Astropart Phys 2020(05):011–011. https://doi.org/10.1088/1475-7516/2020/05/011

    Article  Google Scholar 

  73. Canuel B et al (2020b) Technologies for the ELGAR large scale atom interferometer array. arXiv:2007.04014 [physics-atom]

    Google Scholar 

  74. Cheinet P, Canuel B, Pereira Dos Santos F, Gauguet A, Yver-Leduc F, Landragin A (2008) Measurement of the sensitivity function in a time-domain atomic interferometer. IEEE T Instrum Meas 57:1141. https://doi.org/10.1109/TIM.2007.915148

    Article  Google Scholar 

  75. Itano WM, Bergquist JC, Bollinger JJ, Gilligan JM, Heinzen DJ, Moore FL, Raizen MG, Wineland DJ (1993) Quantum projection noise: population fluctuations in two-level systems. Phys Rev A 47:3554–3570. https://link.aps.org/doi/10.1103/PhysRevA.47.3554

    Article  ADS  Google Scholar 

  76. Lucke B, Scherer M, Kruse J, Pezze L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C (2011) Twin matter waves for interferometry beyond the classical limit. Science 334(6057):773–776. https://doi.org/10.1126/science.1208798

    Article  ADS  Google Scholar 

  77. Hosten O, Engelsen NJ, Krishnakumar R, Kasevich MA (2016) Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529(7587):505–508. https://doi.org/10.1038/nature16176

    Article  ADS  MATH  Google Scholar 

  78. Lévèque T (2010) Development of a high sensitivity cold atom gyroscope based on a folded geometry. Theses, Université Pierre et Marie Curie – Paris VI. https://tel.archives-ouvertes.fr/tel-00532789

    Google Scholar 

  79. Aston SM, Barton MA, Bell AS, Beveridge N, Bland B, Brummitt AJ, Cagnoli G, Cantley CA, Carbone L, Cumming AV, Cunningham L, Cutler RM, Greenhalgh RJS, Hammond GD, Haughian K, Hayler TM, Heptonstall A, Heefner J, Hoyland D, Hough J, Jones R, Kissel JS, Kumar R, Lockerbie NA, Lodhia D, Martin IW, Murray PG, O’Dell J, Plissi MV, Reid S, Romie J, Robertson NA, Rowan S, Shapiro B, Speake CC, Strain KA, Tokmakov KV, Torrie C, van Veggel AA, Vecchio A, Wilmut I (2012) Update on quadruple suspension design for advanced LIGO. Class Quan Grav 29(23):235004. https://doi.org/10.1088/0264-9381/29/23/235004

    Article  ADS  Google Scholar 

  80. Acernese F et al (2010) Measurements of Superattenuator seismic isolation by Virgo interferometer. Astropart Phys 33 (3):182. https://doi.org/10.1016/j.astropartphys.2010.01.006

    Article  ADS  Google Scholar 

  81. Robinson JM, Oelker E, Milner WR, Zhang W, Legero T, Matei DG, Riehle F, Sterr U, Ye J (2019) Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift. Optica 6(2):240. https://doi.org/10.1364/optica.6.000240

    Article  ADS  Google Scholar 

  82. Saulson PR (1984) Terrestrial gravitational noise on a gravitational wave antenna. Phys Rev D 30(4):732–736. https://doi.org/10.1103/physrevd.30.732

    Article  ADS  Google Scholar 

  83. Harms J, Slagmolen BJJ, Adhikari RX, Miller M, Evans M, Chen Y, Müller H, Ando M (2013) Low-frequency terrestrial gravitational-wave detectors. Phys Rev D 88:122003. https://doi.org/10.1103/PhysRevD.88.122003

    Article  ADS  Google Scholar 

  84. Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J (2015) Atom-interferometry constraints on dark energy. Science 349(6250):849–851. https://doi.org/10.1126/science.aaa8883

    Article  ADS  Google Scholar 

  85. Geraci AA, Derevianko A (2016) Sensitivity of atom interferometry to ultralight scalar field dark matter. Phys Rev Lett 117(26). https://doi.org/10.1103/physrevlett.117.261301

  86. Sabulsky DO, Dutta I, Hinds EA, Elder B, Burrage C, Copeland EJ (2019) Experiment to detect dark energy forces using atom interferometry. Phys Rev Lett 123:061102. https://doi.org/10.1103/PhysRevLett.123.061102

    Article  ADS  Google Scholar 

  87. Dickerson SM, Hogan JM, Sugarbaker A, David Johnson MS, Kasevich MA (2013) Multiaxis inertial sensing with long-time point source atom interferometry. Phys Rev Lett 111(8). https://doi.org/10.1103/physrevlett.111.083001

  88. Zhou L, Xiong ZY, Yang W, Tang B, Peng WC, Hao K, Li RB, Liu M, Wang J, Zhan MS (2011) Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement. Gen Relat Gravit 43(7):1931–1942. https://doi.org/10.1007/s10714-011-1167-9

    Article  ADS  Google Scholar 

  89. Hartwig J, Abend S, Schubert C, Schlippert D, Ahlers H, Posso-Trujillo K, Gaaloul N, Ertmer W, Rasel EM (2015) Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J Phys 17(3):035011. https://doi.org/10.1088/1367-2630/17/3/035011

    Article  Google Scholar 

  90. Gaffet S (2019) The LSBB underground research laboratory: a unique facility for fundamental and applied low background inter-disciplinary ground and underground science and technology. Rencontres scientifiques et techniques RESIF 2019. https://hal.archives-ouvertes.fr/hal-02415351. Poster

  91. Graham PW, Hogan JM, Kasevich MA, Rajendran S, Romani RW (2017) Mid-band gravitational wave detection with precision atomic sensors. arXiv:1711.02225 [astro-ph]

    Google Scholar 

  92. Zhan M-S, Wang J, Ni W-T, Gao D-F, Wang G, He L-X, Li R-B, Zhou L, Chen X, Zhong J-Q, Tang B, Yao Z-W, Zhu L, Xiong Z-Y, Lu S-B, Yu G-H, Cheng Q-F, Liu M, Liang Y-R, Xu P, He X-D, Ke M, Tan Z, Luo J (2019) ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. Int J Mod Phys D. https://doi.org/10.1142/s0218271819400054

    Google Scholar 

  93. Allen B, Romano JD (1999) Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys Rev D 59(10):102001. https://doi.org/10.1103/physrevd.59.102001

    Article  ADS  Google Scholar 

  94. Sabulsky DO, Junca J, Lefèvre G, Zou X, Bertoldi A, Battelier B, Prevedelli M, Stern G, Santoire J, Beaufils Q, Geiger R, Landragin A, Desruelle B, Bouyer P, Canuel B (2020) A fibered laser system for the MIGA large scale atom interferometer. Sci Report 10(1). https://doi.org/10.1038/s41598-020-59971-8

  95. Bertoldi A, Feng C-H, Eneriz H, Carey M, Naik DS, Junca J, Zou X, Sabulsky DO, Canuel B, Bouyer P, Prevedelli M (2020) A control hardware based on a field programmable gate array for experiments in atomic physics. Rev Sci Instrum 91(3):033203. https://doi.org/10.1063/1.5129595

    Article  ADS  Google Scholar 

  96. Roger Bowman J, Eli Baker G, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32(9):L09803. ISSN 1944-8007. https://doi.org/10.1029/2005GL022486

  97. Junca J, Bertoldi A, Sabulsky DO, Lefèvre G, Zou X, Decitre J-B, Geiger R, Landragin A, Gaffet S, Bouyer P, Canuel B (2019) Characterizing earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors. Phys Rev D 99:104026. https://doi.org/10.1103/PhysRevD.99.104026

    Article  ADS  MathSciNet  Google Scholar 

  98. Shoda A, Kuwahara Y, Ando M, Eda K, Tejima K, Aso Y, Itoh Y (2017) Ground-based low-frequency gravitational-wave detector with multiple outputs. Phys Rev D 95(8). https://doi.org/10.1103/physrevd.95.082004

  99. Pikovski I, Zych M, Costa F, Brukner Č (2015) Universal decoherence due to gravitational time dilation. Nat Phys 11(8):668–672. https://doi.org/10.1038/nphys3366

    Article  Google Scholar 

  100. Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch TW, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel ST, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, van Zoest T, Ertmer W, Schleich WP, Rasel EM (2013) Interferometry with Bose-Einstein condensates in microgravity. Phys Rev Lett 110(9). https://doi.org/10.1103/physrevlett.110.093602

  101. Bertolini A, Cella G, D’Ambrosio E, DeSalvo R, Sannibale V, Takamori A, Yamamoto H (2000) New seismic attenuation system (SAS) for the advanced LIGO configurations (LIGO2). AIP Conf Proc 523(1):320–324, https://doi.org/10.1063/1.1291874. https://aip.scitation.org/doi/abs/10.1063/1.1291874

  102. Richardson LL, Nath D, Rajagopalan A, Albers H, Meiners C, Schubert C, Tell D, Wodey E, Abend S, Gersemann M, Ertmer W, Rasel EM, Schlippert D, Mehmet M, Kumanchik L, Colmenero L, Spannagel R, Braxmaier C, Guzman F (2020) Optomechanical resonator-enhanced atom interferometry. Commun Phys 3:208. https://doi.org/10.1038/s42005-020-00473-4

    Article  Google Scholar 

  103. Eda K, Itoh Y, Kuroyanagi S, Silk J (2015) Gravitational waves as a probe of dark matter minispikes. Phys Rev D 91(4):044045. https://doi.org/10.1103/physrevd.91.044045

    Article  ADS  Google Scholar 

  104. Baumann D, Chia HS, Porto RA (2019) Probing ultralight bosons with binary black holes. Phys Rev D 99(4). https://doi.org/10.1103/physrevd.99.044001

  105. Saito R, Yokoyama J (2009) Gravitational-wave background as a probe of the primordial black-hole abundance. Phys Rev Lett 102(16):161101. https://doi.org/10.1103/physrevlett.102.161101

    Article  ADS  Google Scholar 

  106. Lasky PD, Mingarelli CMF, Smith TL, Giblin JT, Thrane E, Reardon DJ, Caldwell R, Bailes M, Bhat NDR, Burke-Spolaor S, Dai S, Dempsey J, Hobbs G, Kerr M, Levin Y, Manchester RN, Osłowski S, Ravi V, Rosado PA, Shannon RM, Spiewak R, van Straten W, Toomey L, Wang J, Wen L, You X, Zhu X (2016) Gravitational-wave cosmology across 29 decades in frequency. Phys Rev X 6:293. https://doi.org/10.1103/physrevx.6.011035

    Google Scholar 

  107. Graham WP, Jung S (2018) Localizing gravitational wave sources with single-baseline atom interferometers. Phys Rev D 97:024052. https://doi.org/10.1103/physrevd.97.024052

    Article  ADS  Google Scholar 

  108. Moore CJ, Cole RH, Berry CPL (2014) Gravitational-wave sensitivity curves. Class Quantum Grav 32(1):015014. https://doi.org/10.1088/0264-9381/32/1/015014

    Article  ADS  Google Scholar 

  109. Liu J, Zhang H, Howard AW, Bai Z, Lu Y, Soria R, Justham S, Li X, Zheng Z, Wang T, Belczynski K, Casares J, Zhang W, Yuan H, Dong Y, Lei Y, Isaacson H, Wang S, Bai Y, Shao Y, Gao Q, Wang Y, Niu Z, Cui K, Zheng C, Mu X, Zhang L, Wang W, Heger A, Qi Z, Liao S, Lattanzi M, Gu W-M, Wang J, Wu J, Shao L, Shen R, Wang X, Bregman J, Stefano RD, Liu Q, Han Z, Zhang T, Wang H, Ren J, Zhang J, Zhang J, Wang X, Cabrera-Lavers A, Corradi R, Rebolo R, Zhao Y, Zhao G, Chu Y, Cui X (2019) A wide star–black-hole binary system from radial-velocity measurements. Nature 575(7784):618–621. https://doi.org/10.1038/s41586-019-1766-2

    Article  ADS  Google Scholar 

  110. Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323(6086):310–311. https://doi.org/10.1038/323310a0

    Article  ADS  Google Scholar 

  111. Stellmer S, Pasquiou B, Grimm R, Schreck F (2013) Laser cooling to quantum degeneracy. Phys Rev Lett 110(26). https://doi.org/10.1103/physrevlett.110.263003

  112. Urvoy A, Vendeiro Z, Ramette J, Adiyatullin A, Vuletić V (2019) Direct laser cooling to Bose-Einstein condensation in a dipole trap. Phys Rev Lett 122(20). https://doi.org/10.1103/physrevlett.122.203202

  113. Naik DS, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A (2020) Loading and cooling in an optical trap via hyperfine dark states. Phys Rev Res 2(1). https://doi.org/10.1103/physrevresearch.2.013212

  114. Hensel T, Loriani S, Schubert C, Fitzek F, Abend S, Ahlers H, Siemß J-N, Hammerer K, Rasel EM, Gaaloul N (2021) Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry. Eur Phys J D 75:108. https://doi.org/10.1140/epjd/s10053-021-00069-9

    Article  ADS  Google Scholar 

  115. Chiow S-W, Kovachy T, Chien H-C, Kasevich MA (2011) 102ħk large area atom interferometers. Phys Rev Lett 107:130403. https://doi.org/10.1103/PhysRevLett.107.130403

    Article  ADS  Google Scholar 

  116. Gebbe M, Siemß J-N, Gersemann M, Müntinga H, Herrmann S, Lämmerzahl C, Ahlers H, Gaaloul N, Schubert C, Hammerer K, Abend S, Rasel EM (2021) Twin-lattice atom interferometry. Nat Commun 12:2544. https://doi.org/10.1038/s41467-021-22823-8

    Article  ADS  Google Scholar 

  117. Cox KC, Greve GP, Weiner JM, Thompson JK (2016) Deterministic squeezed states with collective measurements and feedback. Phys Rev Lett 116(9). https://doi.org/10.1103/physrevlett.116.093602

  118. Salvi L, Poli N, Vuletić V, Tino GM (2018) Squeezing on momentum states for atom interferometry. Phys Rev Lett 120(3). https://doi.org/10.1103/physrevlett.120.033601

  119. Bishof M, Zhang X, Martin MJ, Ye J (2013) Optical spectrum analyzer with quantum-limited noise floor. Phys Rev Lett 111(9). https://doi.org/10.1103/physrevlett.111.093604

  120. Kohlhaas R, Bertoldi A, Cantin E, Aspect A, Landragin A, Bouyer P (2015) Phase locking a clock oscillator to a coherent atomic ensemble. Phys Rev X 5(2). https://doi.org/10.1103/physrevx.5.021011

  121. Riou I, Mielec N, Lefèvre G, Prevedelli M, Landragin A, Bouyer P, Bertoldi A, Geiger R, Canuel B (2017) A marginally stable optical resonator for enhanced atom interferometry. J Phys B 50(15):155002. https://doi.org/10.1088/1361-6455/aa7592

    Article  ADS  Google Scholar 

  122. Xu V, Jaffe M, Panda CD, Kristensen SL, Clark LW, Müller H (2019) Probing gravity by holding atoms for 20 seconds. Science 366(6466):745–749. https://doi.org/10.1126/science.aay6428

    Article  ADS  Google Scholar 

  123. Bertoldi A, Minardi F, Prevedelli M (2019) Phase shift in atom interferometers: corrections for nonquadratic potentials and finite-duration laser pulses. Phys Rev A 99(3). https://doi.org/10.1103/physreva.99.033619

  124. Overstreet C, Asenbaum P, Kasevich MA (2021) Physically significant phase shifts in matter-wave interferometry. American J Phys 89:324. https://doi.org/10.1119/10.0002638

    Article  ADS  Google Scholar 

  125. Roura A (2017) Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle. Phys Rev Lett 118(16). https://doi.org/10.1103/physrevlett.118.160401

  126. D’Amico G, Rosi G, Zhan S, Cacciapuoti L, Fattori M, Tino GM (2017) Canceling the gravity gradient phase shift in atom interferometry. Phys Rev Lett 119(25). https://doi.org/10.1103/physrevlett.119.253201

  127. Overstreet C, Asenbaum P, Kovachy T, Notermans R, Hogan JM, Kasevich MA (2018) Effective inertial frame in an atom interferometric test of the equivalence principle. Phys Rev Lett 120(18). https://doi.org/10.1103/physrevlett.120.183604

  128. Schkolnik V, Leykauf B, Hauth M, Freier C, Peters A (2015) The effect of wavefront aberrations in atom interferometry. Appl Phys B 120(2):311–316. https://doi.org/10.1007/s00340-015-6138-5

    Article  ADS  Google Scholar 

  129. Condon G, Rabault M, Barrett B, Chichet L, Arguel R, Eneriz-Imaz H, Naik D, Bertoldi A, Battelier B, Bouyer P, Landragin A (2019) All-optical Bose-Einstein condensates in microgravity. Phys Rev Lett 123(24). https://doi.org/10.1103/physrevlett.123.240402

  130. Becker D, Lachmann MD, Seidel ST, Ahlers H, Dinkelaker AN, Grosse J, Hellmig O, Müntinga H, Schkolnik V, Wendrich T, Wenzlawski A, Weps B, Corgier R, Franz T, Gaaloul N, Herr W, Lüdtke D, Popp M, Amri S, Duncker H, Erbe M, Kohfeldt A, Kubelka-Lange A, Braxmaier C, Charron E, Ertmer W, Krutzik M, Lämmerzahl C, Peters A, Schleich WP, Sengstock K, Walser R, Wicht A, Windpassinger P, Rasel EM (2018) Space-borne Bose–Einstein condensation for precision interferometry. Nature 562(7727):391–395. https://doi.org/10.1038/s41586-018-0605-1

    Article  ADS  Google Scholar 

  131. Lotz C, Froböse T, Wanner A, Overmeyer L, Ertmer W (2020) Einstein-elevator: a new facility for research from μg to 5 g. Gravit Space Res 5(2):11–27. https://doi.org/10.2478/gsr-2017-0007

    Article  Google Scholar 

  132. Aguilera DN, Ahlers H, Battelier B, Bawamia A, Bertoldi A, Bondarescu R, Bongs K, Bouyer P, Braxmaier C, Cacciapuoti L, Chaloner C, Chwalla M, Ertmer W, Franz M, Gaaloul N, Gehler M, Gerardi D, Gesa L, Gürlebeck N, Hartwig J, Hauth M, Hellmig O, Herr W, Herrmann S, Heske A, Hinton A, Ireland P, Jetzer P, Johann U, Krutzik M, Kubelka A, Lämmerzahl C, Landragin A, Lloro I, Massonnet D, Mateos I, Milke A, Nofrarias M, Oswald M, Peters A, Posso-Trujillo K, Rasel E, Rocco E, Roura A, Rudolph J, Schleich W, Schubert C, Schuldt T, Seidel S, Sengstock K, Sopuerta CF, Sorrentino F, Summers D, Tino GM, Trenkel C, Uzunoglu N, von Klitzing W, Walser R, Wendrich T, Wenzlawski A, Weßels P, Wicht A, Wille E, Williams M, Windpassinger P, Zahzam N (2014) STE-QUEST—test of the universality of free fall using cold atom interferometry. Class Quantum Grav 31(11):115010. https://doi.org/10.1088/0264-9381/31/11/115010

    Article  ADS  MATH  Google Scholar 

  133. Trimeche A, Battelier B, Becker D, Bertoldi A, Bouyer P, Braxmaier C, Charron E, Corgier R, Cornelius M, Douch K, Gaaloul N, Herrmann S, Müller J, Rasel E, Schubert C, Wu H, Pereira dos Santos F (2019) Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class Quantum Grav 36(21):215004. https://doi.org/10.1088/1361-6382/ab4548

    Article  ADS  Google Scholar 

  134. Battelier B, Bergé J, Bertoldi A, Blanchet L, Bongs K, Bouyer P, Braxmaier C, Calonico D, Fayet P, Gaaloul N, Guerlin C, Hees A, Jetzer P, Lämmerzahl C, Lecomte S, Le Poncin-Lafitte C, Loriani S, Métris G, Nofrarias M, Rasel E, Reynaud S, Rodrigues M, Rothacher M, Roura A, Salomon C, Schiller S, Schleich WP, Schubert C, Sopuerta C, Sorrentino F, Sumner TJ, Tino GM, Tuckey P, von Klitzing W, Wörner L, Wolf P, Zelan M (2019) Exploring the foundations of the universe with space tests of the equivalence principle. arXiv:1908.11785 [physics.space-ph]

    Google Scholar 

  135. Laurent P, Massonnet D, Cacciapuoti L, Salomon C (2015) The ACES/PHARAO space mission. C R Phys 16(5):540–552. https://doi.org/10.1016/j.crhy.2015.05.002

    Article  Google Scholar 

  136. Aveline DC, Williams JR, Elliott ER, Dutenhoffer C, Kellogg JR, Kohel JM, Lay NE, Oudrhiri K, Shotwell RF, Yu N, Thompson RJ (2020) Observation of bose–einstein condensates in an earth-orbiting research lab. Nature 582(7811):193–197. https://doi.org/10.1038/s41586-020-2346-1

    Article  ADS  Google Scholar 

  137. Naticchioni L, Boschi V, Calloni E, Capello M, Cardini A, Carpinelli M, Cuccuru S, D’Ambrosio M, de Rosa R, Di Giovanni M, d’Urso D, Fiori I, Gaviano S, Giunchi C, Majorana E, Migoni C, Oggiano G, Olivieri M, Paoletti F, Paratore M, Perciballi M, Piccinini D, Punturo M, Puppo P, Rapagnani P, Ricci F, Saccorotti G, Sipala V, Tringali MC (2020) Characterization of the Sos Enattos site for the Einstein Telescope. J Phys Conf Ser 1468:012242. https://doi.org/10.1088%2F1742-6596%2F1468%2F1%2F012242

    Article  Google Scholar 

  138. Audretsch J, Marzlin K-P (1994) Atom interferometry with arbitrary laser configurations: exact phase shift for potentials including inertia and gravitation. J Phys II Fr 4(11):2073–2087. https://doi.org/10.1051/jp2:1994248

    Google Scholar 

  139. Dahan MB, Peik E, Reichel J, Castin Y, Salomon C (1996) Bloch oscillations of atoms in an optical potential. Phys Rev Lett 76(24):4508. https://doi.org/10.1103/PhysRevLett.76.4508

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bertoldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bertoldi, A., Bouyer, P., Canuel, B. (2022). Quantum Sensors with Matter Waves for GW Observation. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_5

Download citation

Publish with us

Policies and ethics