Skip to main content

Terrestrial Laser Interferometers

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Terrestrial laser interferometers for gravitational-wave detection made the landmark first detection of gravitational waves in 2015. We provide an overview of the history of how these laser interferometers prevailed as the most promising technology in the search for gravitational waves. We describe their working principles and their limitations and provide examples of some of the most important technologies that enabled their construction. We introduce each of the four large-scale laser interferometer gravitational-wave detectors in operation around the world today and provide a brief outlook for the future of ground-based detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennefick D (2007) Traveling at the speed of thought: Einstein and the quest for gravitational waves. Princeton University Press. http://www.jstor.org/stable/j.ctt19w72w0

    Book  MATH  Google Scholar 

  2. Giganti JJ, Larson JV, Richard JP, Tobias RL, Weber J (1977) Lunar surface gravimeter experiment. Final report. [moon used as antenna], Technical report

    Google Scholar 

  3. Aguiar OD (2010) Past, present and future of the resonant-mass gravitational wave detectors. Res Astron Astrophys 11:1–42

    Article  ADS  Google Scholar 

  4. Collins H (2004) Gravity’s shadow. The University of Chicago Press, Chicago

    Book  Google Scholar 

  5. Gertsenshtein M, Pustovoit V (1963) On the detection of low frequency gravitational waves. JETP 16:605

    Google Scholar 

  6. Weiss R (1972) Quarterly progress report, vol. 105. Research Laboratory of Electronics, MIT. http://dspace.mit.edu/handle/1721.1/56271

    Google Scholar 

  7. Misner C, Thorne K, Wheeler J, Kaiser D (2017) Gravitation. Princeton University Press, Princeton

    Google Scholar 

  8. Forward RL (1978) Wideband laser-interferometer graviational-radiation experiment. Phys Rev D 17:379–390

    Article  ADS  Google Scholar 

  9. Meers BJ (1988) Recycling in laser-interferometric gravitational-wave detectors. Phys Rev D 38:2317–2326

    Article  ADS  Google Scholar 

  10. Zhao C, Blair DG, Barrigo P, Degallaix J, Dumas J-C, Fan Y, Gras S, Ju L, Lee B, Schediwy S, Yan Z, McClelland DE, Scott SM, Gray MB, Searle AC, Gossler S, Slagmolen BJJ, Dickson J, McKenzie K, Mow-Lowry C, Moylan A, Rabeling D, Cumpston J, Wette K, Munch J, Veitch PJ, Mudge D, Brooks A, Hosken D (2006) Gingin high optical power test facility. J Phys Conf Ser 32:368–373

    Article  ADS  Google Scholar 

  11. Reitze D, Saulson P, Grote H (2019) Advanced interferometric gravitational-wave detectors. World Scientific. https://www.worldscientific.com/doi/abs/10.1142/10181

    Book  MATH  Google Scholar 

  12. Saulson PR (2017) Fundamentals of interferometric gravitational wave detectors, 2nd edn. World Scientific, Singapore

    Book  MATH  Google Scholar 

  13. Adhikari RX (2014) Gravitational radiation detection with laser interferometry. Rev Mod Phys 86:121–151

    Article  ADS  Google Scholar 

  14. Bond C, Brown D, Freise A, Strain KA (2017) Interferometer techniques for gravitational-wave detection. Living Rev Relativ 19(1):3

    Article  ADS  Google Scholar 

  15. Grote H (2019) Gravitational waves: a history of discovery. Taylor and Francis group/CRC Press. https://doi.org/10.1201/9780429028045

    Book  Google Scholar 

  16. Saulson PR (1997) If light waves are stretched by gravitational waves, how can we use light as a ruler to detect gravitational waves? Am J Phys 65(6):501–505

    Article  ADS  Google Scholar 

  17. Shawhan PS (2004) Gravitational waves and the effort to detect them: a worldwide network of detectors may soon measure subtle ripples in spacetime itself, ushering in a new era of astrophysical research. Am Sci 92(4):350–357

    Article  Google Scholar 

  18. Garfinkle D (2006) Gauge invariance and the detection of gravitational radiation. Am J Phys 74:196–199

    Article  ADS  Google Scholar 

  19. LIGO Scientific Collaboration and Virgo Collaboration (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  ADS  MathSciNet  Google Scholar 

  20. Siegman AE (1986) Lasers. University Science Books, Sausalito, CA

    Google Scholar 

  21. Buikema A, Cahillane C, Mansell GL, Blair CD, Abbott R, Adams C, Adhikari RX, Ananyeva A, Appert S, Arai K, Areeda JS, Asali Y, Aston SM, Austin C, Baer AM, Ball M, Ballmer SW, Banagiri S, Barker D, Barsotti L, Bartlett J, Berger BK, Betzwieser J, Bhattacharjee D, Billingsley G, Biscans S, Blair RM, Bode N, Booker P, Bork R, Bramley A, Brooks AF, Brown DD, Cannon KC, Chen X, Ciobanu AA, Clara F, Cooper SJ, Corley KR, Countryman ST, Covas PB, Coyne DC, Datrier LEH, Davis D, Di Fronzo C, Dooley KL, Driggers JC, Dupej P, Dwyer SE, Effler A, Etzel T, Evans M, Evans TM, Feicht J, Fernandez-Galiana A, Fritschel P, Frolov VV, Fulda P, Fyffe M, Giaime JA, Giardina KD, Godwin P, Goetz E, Gras S, Gray C, Gray R, Green AC, Gustafson EK, Gustafson R, Hanks J, Hanson J, Hardwick T, Hasskew RK, Heintze MC, Helmling-Cornell AF, Holland NA, Jones JD, Kandhasamy S, Karki S, Kasprzack M, Kawabe K, Kijbunchoo N, King PJ, Kissel JS, Kumar R, Landry M, Lane BB, Lantz B, Laxen M, Lecoeuche YK, Leviton J, Liu J, Lormand M, Lundgren AP, Macas R, MacInnis M, Macleod DM, Márka S, Márka Z, Martynov DV, Mason K, Massinger TJ, Matichard F, Mavalvala N, McCarthy R, McClelland DE, McCormick S, McCuller L, McIver J, McRae T, Mendell G, Merfeld K, Merilh EL, Meylahn F, Mistry T, Mittleman R, Moreno G, Mow-Lowry CM, Mozzon S, Mullavey A, Nelson TJN, Nguyen P, Nuttall LK, Oberling J, Oram RJ, O’Reilly B, Osthelder C, Ottaway DJ, Overmier H, Palamos JR, Parker W, Payne E, Pele A, Penhorwood R, Perez CJ, Pirello M, Radkins H, Ramirez KE, Richardson JW, Riles K, Robertson NA, Rollins JG, Romel CL, Romie JH, Ross MP, Ryan K, Sadecki T, Sanchez EJ, Sanchez LE, Saravanan TR, Savage RL, Schaetzl D, Schnabel R, Schofield RMS, Schwartz E, Sellers D, Shaffer T, Sigg D, Slagmolen BJJ, Smith JR, Soni S, Sorazu B, Spencer AP, Strain KA, Sun L, Szczepańczyk MJ, Thomas M, Thomas P, Thorne KA, Toland K, Torrie CI, Traylor G, Tse M, Urban AL, Vajente G, Valdes G, Vander-Hyde DC, Veitch PJ, Venkateswara K, Venugopalan G, Viets AD, Vo T, Vorvick C, Wade M, Ward RL, Warner J, Weaver B, Weiss R, Whittle C, Willke B, Wipf CC, Xiao L, Yamamoto H, Yu H, Yu H, Zhang L, Zucker ME, Zweizig J (2020) Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys Rev D 102:062003

    Article  ADS  Google Scholar 

  22. Caves CM (1981) Quantum-mechanical noise in an interferometer. Phys Rev D 23:1693–1708

    Article  ADS  Google Scholar 

  23. Grote H, Danzmann K, Dooley KL, Schnabel R, Slutsky J, Vahlbruch H (2013) First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett 110:181101

    Article  ADS  Google Scholar 

  24. Tse M et al (2019) Quantum-enhanced Advanced LIGO detectors in the era of gravitational-wave astronomy. Phys Rev Lett 123:231107

    Article  ADS  Google Scholar 

  25. Virgo Collaboration (2019) Increasing the astrophysical reach of the Advanced Virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett 123:231108

    Article  ADS  Google Scholar 

  26. McCuller L, Whittle C, Ganapathy D, Komori K, Tse M, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H, Zucker ME, Evans M (2020) Frequency-dependent squeezing for Advanced LIGO. Phys Rev Lett 124:171102

    Article  ADS  Google Scholar 

  27. Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83:34–40

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Saulson PR (1990) Thermal noise in mechanical experiments. Phys Rev D 42:2437–2445

    Article  ADS  Google Scholar 

  29. Levin Y (1998) Internal thermal noise in the LIGO test masses: a direct approach. Phys Rev D 57:659–663

    Article  ADS  Google Scholar 

  30. Evans M, Ballmer S, Fejer M, Fritschel P, Harry G, Ogin G (2008) Thermo-optic noise in coated mirrors for high-precision optical measurements. Phys Rev D 78:102003

    Article  ADS  Google Scholar 

  31. Peterson J (1993) Observations and modeling of seismic background noise. open-file report 93-322, U.S. Department of Interior Geological Survey

    Google Scholar 

  32. Saulson PR (1984) Terrestrial gravitational noise on a gravitational wave antenna. Phys Rev D 30:732–736

    Article  ADS  Google Scholar 

  33. Kane TJ, Byer RL (1985) Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt Lett 10(2):65–67

    Article  ADS  Google Scholar 

  34. Kwee P, Bogan C, Danzmann K, Frede M, Kim H, King P, Pöld J, Puncken O, Savage RL, Seifert F, Wessels P, Winkelmann L, Willke B (2012) Stabilized high-power laser system for the gravitational wave detector Advanced LIGO. Opt Exp 20:10617–10634

    Article  Google Scholar 

  35. Matichard F, Lantz B, Mittleman R, Mason K, Kissel J, Abbott B, Biscans S, McIver J, Abbott R, Abbott S, Allwine E, Barnum S, Birch J, Celerier C, Clark D, Coyne D, DeBra D, DeRosa R, Evans M, Foley S, Fritschel P, Giaime JA, Gray C, Grabeel G, Hanson J, Hardham C, Hillard M, Hua W, Kucharczyk C, Landry M, Roux AL, Lhuillier V, Macleod D, Macinnis M, Mitchell R, O’Reilly B, Ottaway D, Paris H, Pele A, Puma M, Radkins H, Ramet C, Robinson M, Ruet L, Sarin P, Shoemaker D, Stein A, Thomas J, Vargas M, Venkateswara K, Warner J, Wen S (2015) Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance. Class Quantum Gravity 32(18):185003

    Article  ADS  Google Scholar 

  36. Accadia T, Acernese F et al (2011) The seismic superattenuators of the Virgo gravitational waves interferometer. J Low Frequency Noise Vibration Active Control 30:63–79

    Article  Google Scholar 

  37. Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31(2):97–105

    Article  ADS  Google Scholar 

  38. Black ED (2001) An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys 69(1):79–87

    Article  ADS  Google Scholar 

  39. Strain KA, Müller G, Delker T, Reitze DH, Tanner DB, Mason JE, Willems PA, Shaddock DA, Gray MB, Mow-Lowry C, McClelland DE (2003) Sensing and control in dual-recycling laser interferometer gravitational-wave detectors. Appl Opt 42:1244

    Article  ADS  Google Scholar 

  40. Freise A et al. FINESSE. http://gwoptics.org

  41. Evans M et al. Optickle. https://github.com/Optickle/Optickle

  42. Vajente G (2013) Fast modal simulation of paraxial optical systems: the MIST open source toolbox. Class Quantum Gravity 30(7):075014

    Article  ADS  MATH  Google Scholar 

  43. Biscans S, Gras S, Blair CD, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G (2019) Suppressing parametric instabilities in LIGO using low-noise acoustic mode dampers. Phys Rev D 100:122003

    Article  ADS  Google Scholar 

  44. Sun L, Goetz E, Kissel JS, Betzwieser J, Karki S, Viets A, Wade M, Bhattacharjee D, Bossilkov V, Covas PB, Datrier LEH, Gray R, Kandhasamy S, Lecoeuche YK, Mendell G, Mistry T, Payne E, Savage RL, Weinstein AJ, Aston S, Buikema A, Cahillane C, Driggers JC, Dwyer SE, Kumar R, Urban A (2020) Characterization of systematic error in Advanced LIGO calibration. Class Quantum Gravity 37:225008

    Article  ADS  Google Scholar 

  45. Maggiore M, Broeck CVD, Bartolo N, Belgacem E, Bertacca D, Bizouard MA, Branchesi M, Clesse S, Foffa S, García-Bellido J, Grimm S, Harms J, Hinderer T, Matarrese S, Palomba C, Peloso M, Ricciardone A, Sakellariadou M (2020) Science case for the Einstein Telescope. J Cosmol Astropart Phys 2020:050

    Article  Google Scholar 

  46. LIGO Scientific Collaboration and Virgo Collaboration (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys Rev Lett 119:161101

    Article  ADS  Google Scholar 

  47. Saulson P (2019) Sufficiently advanced technology for gravitational wave detection, technical report. https://arxiv.org/abs/1908.02568

  48. Paul Linsay RW, Saulson P, Whitcomb S (1983) A study of a long baseline gravitational wave antenna system, technical report, MIT. https://dcc.ligo.org/LIGO-T830001/public

  49. The LIGO Scientific Collaboration (2008) Beating the spin-down limit on gravitational wave emission from the crab pulsar. Astrophys J 683(1):L45–L49

    Article  ADS  Google Scholar 

  50. Decher R, Randall L, Bender P, Faller J (1980) Design aspects of a laser gravitational wave detector in space. In: Active optical devices and applications, proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 228, pp 149–153

    Google Scholar 

  51. Man C, Shoemaker D, Tu MP, Dewey D (1990) External modulation technique for sensitive interferometric detection of displacements. Phys Lett A 148:8–16

    Article  ADS  Google Scholar 

  52. Del Fabbro R, Di Virgilio A, Giazotto A, Kautzky H, Montelatici V, Passuello D (1987) Three-dimensional seismic super-attenuator for low frequency gravitational wave detection. Phys Lett A 124(4):253–257

    Article  ADS  Google Scholar 

  53. Virgo Collaboration (2014) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Gravity 32:024001

    Google Scholar 

  54. LIGO Scientific Collaboration and Virgo Collaboration (2017) GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101

    Article  ADS  Google Scholar 

  55. TAMA Collaboration (2001) Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. Phys Rev Lett 86:3950–3954

    Article  Google Scholar 

  56. KAGRA Collaboration (2019) KAGRA: 2.5 generation interferometric gravitational wave detector. Nat Astron 3:30–40

    Article  ADS  Google Scholar 

  57. The LIGO Scientific Collaboration (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat Phys 7(12):962–965

    Article  Google Scholar 

  58. KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration (2020) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 23(1):3

    Article  ADS  Google Scholar 

  59. Iyer B, Souradeep T, Unnikrishnan C, Dhurandhar S, Raja S, Kumar A, Sengupta A (2011) LIGO India proposal for an interferometric gravitational wave-observatory, technical report. https://dcc.ligo.org/ligo-M1100296/public

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L Dooley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dooley, K.L., Grote, H., van den Brand, J. (2022). Terrestrial Laser Interferometers. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_2

Download citation

Publish with us

Policies and ethics