Skip to main content

The Gravitational Capture of Compact Objects by Massive Black Holes

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1325 Accesses

Abstract

The gravitational capture of a stellar-mass compact object (CO) by a supermassive black hole is a unique probe of gravity in the strong field regime. Because of the large mass ratio, we call these sources extreme-mass ratio inspirals (EMRIs). In a similar manner, COs can be captured by intermediate-mass black holes in globular clusters or dwarf galaxies. The mass ratio in this case is lower, and hence we refer to the system as an intermediate-mass ratio inspiral (IMRI). Also, sub-stellar objects such as a brown dwarf, with masses much lighter than our Sun, can inspiral into supermassive black holes such as Sgr A* at our Galactic Centre. In this case, the mass ratio is extremely large, and hence, we call this system extremely large mass ratio inspirals (XMRIs). All of these sources of gravitational waves will provide us with a collection of snapshots of spacetime around a supermassive black hole that will allow us to do a direct mapping of warped spacetime around the supermassive black hole, a live cartography of gravity in this extreme gravity regime. E/I/XMRIs will be detected by the future space-borne observatories like LISA. There has not been any other probe conceived, planned, or even thought of ever that can do the science that we can do with these inspirals. We will discuss them from a viewpoint of relativistic astrophysics.

PAS acknowledges support from the Ramón y Cajal Programme of the Ministry of Economy, Industry and Competitiveness of Spain, as well as the COST Action GWverse CA16104. This work was supported by the National Key R&D Program of China (2016YFA0400702) and the National Science Foundation of China (11721303). He is indebted to Marta Masini for her support during the lockdown, without which this work would not have been possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarseth SJ (1999) From NBODY1 to NBODY6: the growth of an industry. Publ Astron Soc Pac 111, 1333–1346

    Article  ADS  Google Scholar 

  2. Aarseth SJ (2003) Gravitational N-Body Simulations (ISBN 0521432723. Cambridge University Press, Cambridge, Nov 2003)

    Google Scholar 

  3. Aarseth SJ, Zare K (1974) A regularization of the three-body problem. Celest Mech 10:185–205. https://doi.org/10.1007/BF01227619

    Article  ADS  MATH  Google Scholar 

  4. Alexander T, Hopman C (2009) Strong mass segregation around a massive black hole. ApJ 697:1861–1869. https://doi.org/10.1088/0004-637X/697/2/1861

    Article  ADS  Google Scholar 

  5. Alexander T, Livio M (2001) Tidal scattering of stars on supermassive black holes in galactic centers. ApJ Lett 560:143–146

    Article  ADS  Google Scholar 

  6. Amaro-Seoane P (2018) Detecting intermediate-mass ratio inspirals from the ground and space. Phys Rev D 98(6):063018. https://doi.org/10.1103/PhysRevD.98.063018

    Article  ADS  Google Scholar 

  7. Amaro-Seoane P (2018) Relativistic dynamics and extreme mass ratio inspirals. Living Rev Relativ 21:4. https://doi.org/10.1007/s41114-018-0013-8

    Article  ADS  Google Scholar 

  8. Amaro-Seoane P, Preto M (2011) The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth. Class Quan Grav 28(9):094017. https://doi.org/10.1088/0264-9381/28/9/094017

    Article  ADS  MATH  Google Scholar 

  9. Amaro-Seoane P, Spurzem R (2001) The loss-cone problem in dense nuclei. MNRAS 327:995–1003

    Article  ADS  Google Scholar 

  10. Amaro-Seoane P, Freitag M, Spurzem R (2004) Accretion of stars on to a massive black hole: A realistic diffusion model and numerical studies. MNRAS 352:655–672

    Article  ADS  Google Scholar 

  11. Amaro-Seoane P, Preto M, Sopuerta C Notes on a relativistic Fokker-Planck integrator for EMRIs. Not published

    Google Scholar 

  12. Amaro-Seoane P, Sopuerta CF, Freitag MD (2013) The role of the supermassive black hole spin in the estimation of the EMRI event rate. MNRAS 429:3155–3165. https://doi.org/10.1093/mnras/sts572

    Article  ADS  Google Scholar 

  13. Amaro-Seoane P, Gair JR, Freitag M, Miller MC, Mandel I, Cutler CJ, Babak S (2007) Intermediate and extreme mass-ratio inspirals. Astrophysics, science applications and detection using LISA. Class Quan Grav 24:113. https://doi.org/10.1088/0264-9381/24/17/R01

  14. Amaro-Seoane P, Barranco J, Bernal A, Rezzolla L (2010) Constraining scalar fields with stellar kinematics and collisional dark matter. J Cosmol Astropart Phys 11:2. https://doi.org/10.1088/1475-7516/2010/11/002

    Article  ADS  Google Scholar 

  15. Amaro-Seoane P, Gair JR, Pound A, Hughes SA, Sopuerta CF (2015) Research update on extreme-mass-ratio inspirals. J Phys Conf Ser 610(1):012002. https://doi.org/10.1088/1742-6596/610/1/012002

    Article  Google Scholar 

  16. Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. ArXiv e-prints

    Google Scholar 

  17. Amaro-Seoane P (2018) Relativistic dynamics and extreme mass ratio inspirals. Living Rev Relativ 21(1):4. https://doi.org/10.1007/s41114-018-0013-8

    Article  ADS  Google Scholar 

  18. Amaro-Seoane P (2019) Extremely large mass-ratio inspirals. Phys Rev D 99(12):123025. https://doi.org/10.1103/PhysRevD.99.123025

    Article  ADS  MathSciNet  Google Scholar 

  19. Arca-Sedda M, Amaro-Seoane P, Chen X (2020) Detecting intermediate-mass black holes in Milky Way globular clusters and the Local Volume with LISA and other gravitational wave detectors. arXiv e-prints, 2007–13746

    Google Scholar 

  20. Arca Sedda M, Askar A, Giersz M (2019) MOCCA-SURVEY Database I. Intermediate mass black holes in Milky Way globular clusters and their connection to supermassive black holes. arXiv e-prints, 1905–00902

    Google Scholar 

  21. Asada H, Futamase T (1997) Chapter 2. Post-Newtonian approximation —its foundation and applications—. Prog Theor Phys Suppl 128:123–181. https://doi.org/10.1143/PTPS.128.123

    Article  ADS  MATH  Google Scholar 

  22. Babak S, Fang H, Gair JR, Glampedakis K, Hughes SA (2007) “Kludge” gravitational waveforms for a test-body orbiting a Kerr black hole. Phys Rev D 75(2):024005. https://doi.org/10.1103/PhysRevD.75.024005

    Article  ADS  MathSciNet  Google Scholar 

  23. Babak S, Gair J, Sesana A, Barausse E, Sopuerta CF, Berry CPL, Berti EP, Amaro-Seoane, Petiteau A, Klein A (2017) Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys Rev D 95(10):103012. https://doi.org/10.1103/PhysRevD.95.103012

  24. Bahcall JN, Wolf RA (1976) Star distribution around a massive black hole in a globular cluster. ApJ 209:214–232

    Article  ADS  Google Scholar 

  25. Bahcall JN, Wolf RA (1977) The star distribution around a massive black hole in a globular cluster. II unequal star masses. ApJ 216:883–907

    Google Scholar 

  26. Baker JG, Centrella J, Choi D-I, Koppitz M, van Meter JR, Miller MC (2006) Getting a kick out of numerical relativity. ApJ Lett 653:93–96. https://doi.org/10.1086/510448

    Article  ADS  Google Scholar 

  27. Bar-Or B, Alexander T (2014) The statistical mechanics of relativistic orbits around a massive black hole. Class Quan Grav 31(24):244003. https://doi.org/10.1088/0264-9381/31/24/244003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bar-Or B, Fouvry J-B (2018) Scalar resonant relaxation of stars around a massive black hole. Astrophys J Lett 860(2):23. https://doi.org/10.3847/2041-8213/aac88e

    Article  ADS  Google Scholar 

  29. Barack L, Cutler C (2004) LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys Rev D 69(8):082005. https://doi.org/10.1103/PhysRevD.69.082005

    Article  ADS  Google Scholar 

  30. Barack L, Pound A (2019) Self-force and radiation reaction in general relativity. Rep Prog Phys 82(1):016904. https://doi.org/10.1088/1361-6633/aae552

    Article  ADS  Google Scholar 

  31. Barausse E, Berti E, Hertog T, Hughes SA, Jetzer P, Pani P, Sotiriou TP, Tamanini N, Witek H, Yagi K, Yunes N, Abdelsalhin T, Achucarro A, van Aelst K, Afshordi N, Akcay S, Annulli L, Arun KG, Ayuso I, Baibhav V, Baker T, Bantilan H, Barreiro T, Barrera-Hinojosa C, Bartolo N, Baumann D, Belgacem E, Bellini E, Bellomo N, Ben-Dayan I, Bena I, Benkel R, Bergshoefs E, Bernard L, Bernuzzi S, Bertacca D, Besancon M, Beutler F, Beyer F, Bhagwat S, Bicak J, Biondini S, Bize S, Blas D, Boehmer C, Boller K, Bonga B, Bonvin C, Bosso P, Bozzola G, Brax P, Breitbach M, Brito R, Bruni M, Brügmann B, Bulten H, Buonanno A, Burko LM, Burrage C, Cabral F, Calcagni G, Caprini C, Cárdenas-Avendaño A, Celoria M, Chatziioannou K, Chernoff D, Clough K, Coates A, Comelli D, Compère G, Croon D, Cruces D, Cusin G, Dalang C, Danielsson U, Das S, Datta S, de Boer J, De Luca V, De Rham C, Desjacques V, Destounis K, Di Filippo F, Dima A, Dimastrogiovanni E, Dolan S, Doneva D, Duque F, Durrer R, East W, Easther R, Elley M, Ellis JR, Emparan R, Ezquiaga JM, Fairbairn M, Fairhurst S, Farmer HF, Fasiello MR, Ferrari V, Ferreira PG, Ficarra G, Figueras P, Fisenko S, Foffa S, Franchini N, Franciolini G, Fransen K, Frauendiener J, Frusciante N, Fujita R, Gair J, Ganz A, Garcia P, Garcia-Bellido J, Garriga J, Geiger R, Geng C, Ǵergely A L, Germani C, Gerosa D, Giddings SB, Gourgoulhon E, Grand Clement P, Graziani L, Gualtieri L, Haggard D, Haino S, Halburd R, Han W-B, Hawken AJ, Hees A, Heng IS, Hennig J, Herdeiro C, Hervik S, Holten Jv, Hoyle CJD, Hu Y, Hull M, Ikeda T, Isi M, Jenkins A, Julié F, Kajfasz E, Kalaghatgi C, Kaloper N, Kamionkowski M, Karas V, Kastha S, Keresztes Z, Kidder L, Kimpson T, Klein A, Klioner S, Kokkotas K, Kolesova H, Kolkowitz S, Kopp J, Koyama K, Krishnendu NV, Kroon JAV, Kunz M, Lahav O, Landragin A, Lang RN, Le Poncin-Lafitte C, Lemos J, Li B, Liberati S, Liguori M, Lin F, Liu G, Lobo FSN, Loll R, Lombriser L, Lovelace G, Macedo RP, Madge E, Maggio E, Maggiore M, Marassi S, Marcoccia P, Markakis C, Martens W, Martinovic K, Martins CJAP, Maselli A, Mastrogiovanni S, Matarrese S, Matas A, Mavromatos NE, Mazumdar A, Meerburg PD, Megias E, Miller J, Mimoso JP, Mittnacht L, Montero MM, Moore B, Martin-Moruno P, Musco I, Nakano H, Nampalliwar S, Nardini G, Nielsen A, Novák J, Nunes NJ, Okounkova M, Oliveri R, Oppizzi F, Orlando G, Oshita N, Pappas G, Paschalidis V, Peiris H, Peloso M, Perkins S, Pettorino V, Pikovski I, Pilo L, Podolsky J, Pontzen A, Prabhat S, Pratten G, Prokopec T, Prouza M, Qi H, Raccanelli A, Rajantie A, Randall L, Raposo G, Raymond V, Renaux-Petel S, Ricciardone A, Riotto A, Robson T, Roest D, Rollo R, Rosofsky S, Ruan JJ, Rubiera-García D, Ruiz M, Rusu M, Sabatie F, Sago N, Sakellariadou M, Saltas ID, Sberna L, Sathyaprakash B, Scheel M, Schmidt P, Schutz B, Schwaller P, Shao L, Shapiro SL, Shoemaker D, Silva AD, Simpson C, Sopuerta CF, Spallicci A, Stefanek BA, Stein L, Stergioulas N, Stott M, Sutton P, Svarc R, Tagoshi H, Tahamtan T, Takeda H, Tanaka T, Tantilian G, Tasinato G, Tattersall O, Teukolsky S, Tiec AL, Theureau G, Trodden M, Tolley A, Toubiana A, Traykova D, Tsokaros A, Unal C, Unnikrishnan CS, Vagenas EC, Valageas P, Vallisneri M, Van den Brand J, Van den Broeck C, van de Meent M, Vanhove P, Varma V, Veitch J, Vercnocke B, Verde L, Vernieri D, Vernizzi F, Vicente R, Vidotto F, Visser M, Vlah Z, Vretinaris S, Völkel S, Wang Q, Wang Y-T, Werner MC, Westernacher J, Weygaert RVD, Wiltshire D, Wiseman T, Wolf P, Wu K, Yamada K, Yang H, Yi L, Yue X, Yvon D, Zilhão M, Zimmerman A, Zumalacarregui M (2020) Prospects for fundamental physics with LISA. Gen Relativ Gravit 52(8):81. https://doi.org/10.1007/s10714-020-02691-1

  32. Baumgardt H, Amaro-Seoane P, Schödel R (2018) The distribution of stars around the Milky Way’s central black hole. III. Comparison with simulations. Astron Astrophys 609:28. https://doi.org/10.1051/0004-6361/201730462

  33. Berry CPL, Gair JR (2013) Observing the Galaxy’s massive black hole with gravitational wave bursts. Mon Not R Astron Soc 429(1):589–612. https://doi.org/10.1093/mnras/sts360

    Article  ADS  Google Scholar 

  34. Berry C, Hughes S, Sopuerta C, Chua A, Heffernan A, Holley-Bockelmann K, Mihaylov D, Miller C, Sesana A (2019) The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy. Bull Am Astron Soc 51(3):42

    Google Scholar 

  35. Berti E, Yagi K, Yang H, Yunes N (2018) Extreme gravity tests with gravitational waves from compact binary coalescences: (II) Ringdown. Gen Rel Grav 50(5):49. https://doi.org/10.1007/s10714-018-2372-6

    Article  ADS  MATH  Google Scholar 

  36. Bianchini P, van de Ven G, Norris MA, Schinnerer E, Varri AL (2016) A novel look at energy equipartition in globular clusters. MNRAS 458:3644–3654. https://doi.org/10.1093/mnras/stw552

    Article  ADS  Google Scholar 

  37. Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press

    Book  MATH  Google Scholar 

  38. Blanchet L (2014) Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev Rel 17:2. https://doi.org/10.12942/lrr-2014-2

    Article  MATH  Google Scholar 

  39. Bohé A, Shao L, Taracchini A, Buonanno A, Babak S, Harry IW, Hinder I, Ossokine S, Pürrer M, Raymond V, Chu T, Fong H, Kumar P, Pfeiffer HP, Boyle M, Hemberger DA, Kidder LE, Lovelace G, Scheel MA, Szilágyi B (2017) Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys Rev D 95(4):044028. https://doi.org/10.1103/PhysRevD.95.044028

    Article  ADS  Google Scholar 

  40. Boyer RH, Lindquist RW (1967) Maximal analytic extension of the kerr metric. J Math Phys 8(2):265–281. https://doi.org/10.1063/1.1705193

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Brown WR, Geller MJ, Kenyon SJ, Bromley BC (2009) The anisotropic spatial distribution of hypervelocity stars. ApJ Lett 690:69–71. https://doi.org/10.1088/0004-637X/690/1/L69

    Article  ADS  Google Scholar 

  42. Buonanno A, Damour T (1999) Effective one-body approach to general relativistic two-body dynamics. Phys Rev D 59(8):084006. https://doi.org/10.1103/PhysRevD.59.084006

    Article  ADS  MathSciNet  Google Scholar 

  43. Campanelli M, Lousto CO, Marronetti P, Zlochower Y (2006) Accurate evolutions of orbiting black-hole binaries without excision. Phys Rev Lett 96(11):111101. https://doi.org/10.1103/PhysRevLett.96.111101

    Article  ADS  Google Scholar 

  44. Carr B, Kühnel F (2020) Primordial black holes as dark matter: recent developments. Annu Rev Nucl Part Sci 70(1). https://doi.org/10.1146/annurev-nucl-050520-125911

  45. Carr B, Kohri K, Sendouda Y, Yokoyama J (2020) Constraints on primordial black holes. arXiv e-prints, 2002–12778

    Google Scholar 

  46. Chabrier G, Baraffe I (2000) Theory of low-mass stars and substellar objects. ARA&A 38:337–377

    Article  ADS  Google Scholar 

  47. Chabrier G, Baraffe I, Leconte J, Gallardo J, Barman T (2009) The mass-radius relationship from solar-type stars to terrestrial planets: a review. In: Stempels E (ed) 15th Cambridge workshop on cool stars, stellar systems, and the sun. American Institute of Physics Conference Series, vol. 1094, pp. 102–111. https://doi.org/10.1063/1.3099078

    Google Scholar 

  48. Chandrasekhar S (1942) Principles of stellar dynamics. Physical Sciences Data

    MATH  Google Scholar 

  49. Charbonnel C, Dappen̈ W, Schaerer D, Bernasconi PA, Maeder A, Meynet G, Mowlavi N (1999) Grids of stellar models. VIII. from 0.4 to 1.0 {M_{sun}} at z=0.020 and z=0.001, with the mhd equation of state. A&AS 135:405–413

    Google Scholar 

  50. Chen X, Amaro-Seoane P (2017) Revealing the formation of stellar-mass black hole binaries: the need for Deci-Hertz gravitational-wave observatories. ApJ Lett 842:2. https://doi.org/10.3847/2041-8213/aa74ce

    Article  ADS  Google Scholar 

  51. Chernoff DF, Weinberg MD (1990) Evolution of globular clusters in the Galaxy. ApJ 351:121–156. https://doi.org/10.1086/168451

    Article  ADS  Google Scholar 

  52. Chua AJK, Gair JR (2015) Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis. Class Quan Grav 32(23):232002. https://doi.org/10.1088/0264-9381/32/23/232002

    Article  ADS  MathSciNet  Google Scholar 

  53. Chua AJK, Moore CJ, Gair JR (2017) Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys Rev D 96(4):044005. https://doi.org/10.1103/PhysRevD.96.044005

    Article  ADS  MathSciNet  Google Scholar 

  54. Chua AJK, Katz ML, Warburton N, Hughes SA (2020) Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis. arXiv e-prints, 2008–06071

    Google Scholar 

  55. Cohn H (1980) Late core collapse in star clusters and the gravothermal instability. ApJ 242:765–771

    Article  ADS  Google Scholar 

  56. Conselice CJ, Wilkinson A, Duncan K, Mortlock A (2016) The evolution of galaxy number density at z < 8 and its implications. ApJ 830(2):83. https://doi.org/10.3847/0004-637X/830/2/83

    Article  ADS  Google Scholar 

  57. Cutler C, Harms J (2006) Big Bang Observer and the neutron-star-binary subtraction problem. Phys Rev D 73(4):042001. https://doi.org/10.1103/PhysRevD.73.042001

    Article  ADS  Google Scholar 

  58. Cutler C, Kennefick D, Poisson E (1994) Gravitational radiation reaction for bound motion around a Schwarzschild black hole. Phys Rev D 50:3816–3835. https://doi.org/10.1103/PhysRevD.50.3816

    Article  ADS  Google Scholar 

  59. Cutler C, Vallisneri M (2007) LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms. Phys Rev D 76(10):104018. https://doi.org/10.1103/PhysRevD.76.104018

    Article  ADS  Google Scholar 

  60. Datta S, Gupta A, Kastha S, Arun KG, Sathyaprakash BS (2020) Tests of general relativity using multiband observations of intermediate mass binary black hole mergers. arXiv e-prints, 2006–12137

    Google Scholar 

  61. Dehnen W (1993) A family of potential-density pairs for spherical galaxies and bulges. MNRAS 265:250

    Article  ADS  Google Scholar 

  62. Dorband EN, Hemsendorf M, Merritt D (2003) Systolic and hyper-systolic algorithms for the gravitational N-body problem, with an application to Brownian motion. J Comput Phys 185:484–511

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Ehlers J, Rosenblum A, Goldberg JN, Havas P (1976) Comments on gravitational radiation damping and energy loss in binary systems. ApJ Lett 208:77–81. https://doi.org/10.1086/182236

    Article  ADS  Google Scholar 

  64. Eilon E, Kupi G, Alexander T (2009) The efficiency of resonant relaxation around a massive black hole. Astrophys J 698(1):641–647. https://doi.org/10.1088/0004-637X/698/1/641

    Article  ADS  Google Scholar 

  65. Eisenhauer F, Perrin G, Brandner W, Straubmeier C, Richichi A, Gillessen S, Berger JP, Hippler S, Eckart A, Schöller M, Rabien S, Cassaing F, Lenzen R, Thiel M, Clénet Y, Ramos JR, Kellner S, Fédou P, Baumeister H, Hofmann R, Gendron E, Boehm A, Bartko H, Haubois X, Klein R, Dodds-Eden K, Houairi K, Hormuth F, Gräter A, Jocou L, Naranjo V, Genzel R, Kervella P, Henning T, Hamaus N, Lacour S, Neumann U, Haug M, Malbet F, Laun W, Kolmeder J, Paumard T, Rohloff R-R, Pfuhl O, Perraut K, Ziegleder J, Rouan D, Rousset G (2008) GRAVITY: getting to the event horizon of Sgr A*. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 7013. https://doi.org/10.1117/12.788407

  66. Event Horizon Telescope Collaboration, Akiyama K, Alberdi A, Alef W, Asada K, Azulay R, Baczko A-K, Ball D, Baloković M, Barrett J, Bintley D, Blackburn L, Boland W, Bouman KL, Bower GC, Bremer M, Brinkerink CD, Brissenden R, Britzen S, Broderick AE, Broguiere D, Bronzwaer T, Byun D-Y, Carlstrom JE, Chael A, Chan C-K, Chatterjee S, Chatterjee K, Chen M-T, Chen Y, Cho I, Christian P, Conway JE, Cordes JM, Crew GB, Cui Y, Davelaar J, De Laurentis M, Deane R, Dempsey J, Desvignes G, Dexter J, Doeleman SS, Eatough RP, Falcke H, Fish VL, Fomalont E, Fraga-Encinas R, Freeman WT, Friberg P, Fromm CM, Gómez JL, Galison P, Gammie CF, Garcí a R, Gentaz O, Georgiev B, Goddi C, Gold R, Gu M, Gurwell M, Hada K, Hecht MH, Hesper R, Ho LC, Ho P, Honma M, Huang C-WL, Huang L, Hughes DH, Ikeda S, Inoue M, Issaoun S, James DJ, Jannuzi BT, Janssen M, Jeter B, Jiang W, Johnson MD, Jorstad S, Jung T, Karami M, Karuppusamy R, Kawashima T, Keating GK, Kettenis M, Kim J-Y, Kim J, Kim J, Kino M, Koay JY, Koch PM, Koyama S, Kramer M, Kramer C, Krichbaum TP, Kuo C-Y, Lauer TR, Lee S-S, Li Y-R, Li Z, Lindqvist M, Liu K, Liuzzo E, Lo W-P, Lobanov AP, Loinard L, Lonsdale C, Lu R-S, MacDonald NR, Mao J, Markoff S, Marrone DP, Marscher AP, Martí-Vidal I, Matsushita S, Matthews LD, Medeiros L, Menten KM, Mizuno Y, Mizuno I, Moran JM, Moriyama K, Moscibrodzka M, Müller C, Nagai H, Nagar NM, Nakamura M, Narayan R, Narayanan G, Natarajan I, Neri R, Ni C, Noutsos A, Okino H, Olivares H, Ortiz-León GN, Oyama T, Özel F, Palumbo DCM, Patel N, Pen U-L, Pesce DW, Piétu V, Plambeck R, PopStefanija A, Porth O, Prather B, Preciado-López JA, Psaltis D, Pu H-Y, Ramakrishnan V, Rao R, Rawlings MG, Raymond AW, Rezzolla L, Ripperda B, Roelofs F, Rogers A, Ros E, Rose M, Roshanineshat A, Rottmann H, Roy AL, Ruszczyk C, Ryan BR, Rygl KLJ, Sánchez S, Sánchez-Arguelles D, Sasada M, Savolainen T, Schloerb FP, Schuster K-F, Shao L, Shen Z, Small D, Sohn BW, SooHoo J, Tazaki F, Tiede P, Tilanus RPJ, Titus M, Toma K, Torne P, Trent T, Trippe S, Tsuda S, van Bemmel I, van Langevelde HJ, van Rossum DR, Wagner J, Wardle J, Weintroub J, Wex N, Wharton R, Wielgus M, Wong GN, Wu Q, Young K, Young A, Younsi Z, Yuan F, Yuan Y-F, Zensus JA, Zhao G, Zhao S-S, Zhu Z, Algaba J-C, Allardi A, Amestica R, Anczarski J, Bach U, Baganoff FK, Beaudoin C, Benson BA, Berthold R, Blanchard JM, Blundell R, Bustamente S, Cappallo R, Castillo-Domínguez E, Chang C-C, Chang S-H, Chang S-C, Chen C-C, Chilson R, Chuter TC, Córdova Rosado R, Coulson IM, Crawford TM, Crowley J, David J, Derome M, Dexter M, Dornbusch S, Dudevoir KA, Dzib SA, Eckart A, Eckert C, Erickson NR, Everett WB, Faber A, Farah JR, Fath V, Folkers TW, Forbes DC, Freund R, Gómez-Ruiz AI, Gale DM, Gao F, Geertsema G, Graham DA, Greer CH, Grosslein R, Gueth F, Haggard D, Halverson NW, Han C-C, Han K-C, Hao J, Hasegawa Y, Henning JW, Hernández-Gómez A, Herrero-Illana R, Heyminck S, Hirota A, Hoge J, Huang Y-D, Impellizzeri CMV, Jiang H, Kamble A, Keisler R, Kimura K, Kono Y, Kubo D, Kuroda J, Lacasse R, Laing RA, Leitch EM, Li C-T, Lin LC-C, Liu C-T, Liu K-Y, Lu L-M, Marson RG, Martin-Cocher PL, Massingill KD, Matulonis C, McColl MP, McWhirter SR, Messias H, Meyer-Zhao Z, Michalik D, Montaña A, Montgomerie W, Mora-Klein M, Muders D, Nadolski A, Navarro S, Neilsen J, Nguyen CH, Nishioka H, Norton T, Nowak MA, Nystrom G, Ogawa H, Oshiro P, Oyama T, Parsons H, Paine SN, Peñalver J, Phillips NM, Poirier M, Pradel N, Primiani RA, Raffin PA, Rahlin AS, Reiland G, Risacher C, Ruiz I, Sáez-Madaín AF, Sassella R, Schellart P, Shaw P, Silva KM, Shiokawa H, Smith DR, Snow W, Souccar K, Sousa D, Sridharan TK, Srinivasan R, Stahm W, Stark AA, Story K, Timmer ST, Vertatschitsch L, Walther C, Wei T-S, Whitehorn N, Whitney AR, Woody DP, Wouterloot JGA, Wright M, Yamaguchi P, Yu C-Y, Zeballos M, Zhang S, Ziurys L (2019) First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys J Lett 875(1):1. https://doi.org/10.3847/2041-8213/ab0ec7

  67. Finn LS (1992) Detection, measurement, and gravitational radiation. prd 46:5236–5249. https://doi.org/10.1103/PhysRevD.46.5236

  68. Finn LS, Thorne KS (2000) Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA. Phys Rev D 62(12):124021. https://doi.org/10.1103/PhysRevD.62.124021

    Article  ADS  Google Scholar 

  69. Frank J, Rees MJ (1976) Effects of massive central black holes on dense stellar systems. MNRAS 176:633–647. https://doi.org/10.1093/mnras/176.3.633

    Article  ADS  Google Scholar 

  70. Freitag M, Amaro-Seoane P, Kalogera V (2006) Stellar remnants in galactic nuclei: mass segregation. ApJ 649:91–117. https://doi.org/10.1086/506193

    Article  ADS  Google Scholar 

  71. Gair JR, Glampedakis K (2006) Improved approximate inspirals of test bodies into Kerr black holes. Phys Rev D 73(6):064037. https://doi.org/10.1103/PhysRevD.73.064037

    Article  ADS  MathSciNet  Google Scholar 

  72. Gallego-Cano E, Schödel R, Dong H, Nogueras-Lara F, Gallego-Calvente AT, Amaro-Seoane P, Baumgardt H (2018) The distribution of stars around the Milky Way’s central black hole. I. Deep star counts. Astron Astrophys 609:26. https://doi.org/10.1051/0004-6361/201730451

  73. Gebhardt K, Rich RM, Ho LC (2002) A 20000M black hole in the stellar cluster G1. ApJ Lett 578:41–45

    Article  ADS  Google Scholar 

  74. Genzel R, Eisenhauer F, Gillessen S (2010) The Galactic Center massive black hole and nuclear star cluster. Rev Mod Phys 82(4):3121–3195. https://doi.org/10.1103/RevModPhys.82.3121

    Article  ADS  Google Scholar 

  75. Gerssen J, van der Marel RP, Gebhardt K, Guhathakurta P, Peterson RC, Pryor C (2002) Hubble space telescope evidence for an intermediate-mass black hole in the globular cluster M15. II. Kinematic analysis and dynamical modeling. AJ 124: 3270–3288

    Google Scholar 

  76. Gieles M (2009) The early evolution of the star cluster mass function. MNRAS 394(4):2113–2126. https://doi.org/10.1111/j.1365-2966.2009.14473.x

    Article  ADS  MATH  Google Scholar 

  77. Giersz M (1998) Monte carlo simulations of star clusters – I. first results. MNRAS 298:1239–1248

    Article  ADS  Google Scholar 

  78. Giersz M, Heggie DC (1994) Statistics of n-body simulations – part one – equal masses before core collapse. MNRAS 268:257

    Article  ADS  Google Scholar 

  79. Giersz M, Leigh N, Hypki A, Lützgendorf N, Askar A (2015) MOCCA code for star cluster simulations – IV. A new scenario for intermediate mass black hole formation in globular clusters. MNRAS 454(3):3150–3165. https://doi.org/10.1093/mnras/stv2162

    Article  ADS  Google Scholar 

  80. Gillessen S, Perrin G, Brandner W, Straubmeier C, Eisenhauer F, Rabien S, Eckart A, Lena P, Genzel R, Paumard T, Hippler S (2006) GRAVITY: the adaptive-optics-assisted two-object beam combiner instrument for the VLTI. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 6268. https://doi.org/10.1117/12.671431

  81. Glampedakis K, Hughes SA, Kennefick D (2002) Approximating the inspiral of test bodies into Kerr black holes. Phys Rev D 66(6):064005. https://doi.org/10.1103/PhysRevD.66.064005

    Article  ADS  MathSciNet  Google Scholar 

  82. Glampedakis K, Hughes SA, Kennefick D (2002) Approximating the inspiral of test bodies into Kerr black holes. Phys Rev D 66(6):064005

    Article  ADS  MathSciNet  Google Scholar 

  83. Glampedakis K, Kennefick D (2002) Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction. Phys Rev D 66(4):044002. https://doi.org/10.1103/PhysRevD.66.044002

    Article  ADS  MathSciNet  Google Scholar 

  84. González JA, Sperhake U, Brügmann B, Hannam M, Husa S (2007) Maximum Kick from Nonspinning Black-Hole Binary Inspiral. Phys Rev Lett 98(9):091101. https://doi.org/10.1103/PhysRevLett.98.091101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Gravity Collaboration, Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, Brandner W, Cardoso V, Clénet Y, de Zeeuw PT, Dexter J, Eckart A, Eisenhauer F, Förster Schreiber NM, Garcia P, Gao F, Gendron E, Genzel R, Gillessen S, Habibi M, Haubois X, Henning T, Hippler S, Horrobin M, Jiménez-Rosales A, Jochum L, Jocou L, Kaufer A, Kervella P, Lacour S, Lapeyrère V, Le Bouquin J-B, Léna P, Nowak M, Ott T, Paumard T, Perraut K, Perrin G, Pfuhl O, Rodríguez-Coira G, Shangguan J, Scheithauer S, Stadler J, Straub O, Straubmeier C, Sturm E, Tacconi LJ, Vincent F, von Fellenberg S, Waisberg I, Widmann F, Wieprecht E, Wiezorrek E, Woillez J, Yazici S, Zins G (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:5. https://doi.org/10.1051/0004-6361/202037813

    Article  Google Scholar 

  86. Guillochon J, Ramirez-Ruiz E (2013) Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. ApJ 767:25. https://doi.org/10.1088/0004-637X/767/1/25

    Article  ADS  Google Scholar 

  87. Gültekin K, Miller MC, Hamilton DP (2004) Growth of intermediate-mass black holes in globular clusters. ApJ 616:221–230. https://doi.org/10.1086/424809

    Article  ADS  Google Scholar 

  88. Haehnelt MG (1994) Low-frequency gravitational waves from supermassive black-holes. MNRAS 269:199. https://doi.org/10.1093/mnras/269.1.199

    Article  ADS  Google Scholar 

  89. Hannuksela OA, Wong KWK, Brito R, Berti E, Li TGF (2019) Probing the existence of ultralight bosons with a single gravitational-wave measurement. Nat Astron 3(5):447–451. https://doi.org/10.1038/s41550-019-0712-4

    Article  ADS  Google Scholar 

  90. Hansen RO (1972) Post-Newtonian gravitational radiation from point masses in a hyperbolic Kepler orbit. Phys Rev D 5:1021–1023. https://doi.org/10.1103/PhysRevD.5.1021

    Article  ADS  Google Scholar 

  91. Haster C-J, Antonini F, Kalogera V, Mandel I (2016) N-body dynamics of intermediate mass-ratio inspirals in star clusters. ApJ 832:192. https://doi.org/10.3847/0004-637X/832/2/192

    Article  ADS  Google Scholar 

  92. Helstrom CW (1968) Statistical Theory of Signal Detection

    Google Scholar 

  93. Henoń M (1973) Collisional dynamics of spherical stellar systems. In: Martinet L, Mayor M (eds) Dynamical structure and evolution of stellar systems, Lectures of the 3rd Advanced Course of the Swiss Society for Astronomy and Astrophysics (SSAA), pp 183–260

    Google Scholar 

  94. Hénon M (1975) Two recent developments concerning the Monte Carlo method. In: Hayli A (ed) IAU Symposium 69: dynamics of stellar systems, p 133

    Google Scholar 

  95. Hild S, Abernathy M, Acernese F, Amaro-Seoane P et al (2011) Sensitivity studies for third-generation gravitational wave observatories. Class Quan Grav 28(9):094013. https://doi.org/10.1088/0264-9381/28/9/094013

    Article  ADS  Google Scholar 

  96. Hills JG (1988) Hyper-velocity and tidal stars from binaries disrupted by a massive galactic black hole. Nat 331:687–689

    Article  ADS  Google Scholar 

  97. Hils D, Bender PL (1995) Gradual approach to coalescence for compact stars orbiting massive black holes. ApJ Lett 445:7–10 https://doi.org/10.1086/187876

    Article  ADS  Google Scholar 

  98. Hong J, Lee HM (2015) Black hole binaries in galactic nuclei and gravitational wave sources. MNRAS 448:754–770. https://doi.org/10.1093/mnras/stv035

    Article  ADS  Google Scholar 

  99. Hopman C, Alexander T (2006) Resonant relaxation near a massive black hole: the stellar distribution and gravitational wave sources. Astrophys J 645(2):1152–1163. https://doi.org/10.1086/504400

    Article  ADS  Google Scholar 

  100. Hopman C, Freitag M, Larson SL (2007) Gravitational wave bursts from the Galactic massive black hole. Mon Not R Astron Soc 378(1):129–136. https://doi.org/10.1111/j.1365-2966.2007.11758.x

    Article  ADS  Google Scholar 

  101. Hughes SA (2001) Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Phys Rev D 64(6):064004. https://doi.org/10.1103/PhysRevD.64.064004

  102. Kepler J (1619) Harmonices mundi libri v. Publisher Linz

    Book  Google Scholar 

  103. Kocsis B, Gáspár ME, Márka S (2006) Detection rate estimates of gravity waves emitted during parabolic encounters of stellar black holes in globular clusters. ApJ 648:411–429. https://doi.org/10.1086/505641

    Article  ADS  Google Scholar 

  104. Konstantinidis S, Amaro-Seoane P, Kokkotas KD (2013) Investigating the retention of intermediate-mass black holes in star clusters using N-body simulations. A&A 557:135. https://doi.org/10.1051/0004-6361/201219620

    Article  ADS  Google Scholar 

  105. Kormendy J, Ho LC (2013) Coevolution (or not) of supermassive black holes and host galaxies. ARA&A 51:511–653. https://doi.org/10.1146/annurev-astro-082708-101811

    Article  ADS  Google Scholar 

  106. Kormendy J (2004) The stellar-dynamical search for supermassive black holes in galactic nuclei. In: Ho LC (ed) Coevolution of black holes and galaxies, p 1

    Google Scholar 

  107. Kormendy J, Ho LC (2013) Coevolution (Or Not) of supermassive black holes and host galaxies. Annu Rev Astron Astrophys 51(1):511–653. https://doi.org/10.1146/annurev-astro-082708-101811

    Article  ADS  Google Scholar 

  108. Królak A, Kokkotas KD, Schäfer G (1995) Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary. Phys Rev D 52:2089–2111. https://doi.org/10.1103/PhysRevD.52.2089

    Article  ADS  Google Scholar 

  109. Kroupa P, Weidner C, Pflamm-Altenburg J, Thies I, Dabringhausen J, Marks M, Maschberger T (2013) In: Oswalt TD, Gilmore G (eds) The stellar and sub-stellar initial mass function of simple and composite populations, p 115. https://doi.org/10.1007/978-94-007-5612-04

  110. Kroupa P (2001) On the variation of the initial mass function. Mon Not R Astron Soc 322(2):231–246. https://doi.org/10.1046/j.1365-8711.2001.04022.x

    Article  ADS  Google Scholar 

  111. Kupi G, Amaro-Seoane P, Spurzem R (2006) Dynamics of compact object clusters: a post-Newtonian study. MNRAS 77. https://doi.org/10.1111/j.1745-3933.2006.00205.x

  112. Larson RB (1970) A method for computing the evolution of star clusters. MNRAS 147:323

    Article  ADS  Google Scholar 

  113. Lee WH, Ramirez-Ruiz E, van de Ven G (2010) Short gamma-ray bursts from dynamically assembled compact binaries in globular clusters: pathways, rates, hydrodynamics, and cosmological setting. ApJ 720:953–975. https://doi.org/10.1088/0004-637X/720/1/953

    Article  ADS  Google Scholar 

  114. Leigh NWC, Lützgendorf N, Geller AM, Maccarone TJ, Heinke C, Sesana A (2014) On the coexistence of stellar-mass and intermediate-mass black holes in globular clusters. MNRAS 444:29–42. https://doi.org/10.1093/mnras/stu1437

    Article  ADS  Google Scholar 

  115. Lightman AP, Shapiro SL (1977) The distribution and consumption rate of stars around a massive, collapsed object. ApJ 211:244–262

    Article  ADS  Google Scholar 

  116. LIGO Scientific Collaboration, Virgo Collaboration (2020) GW190521: a binary black hole merger with a total mass of 150 M. Phys Rev L 125(10):101102. https://doi.org/10.1103/PhysRevLett.125.101102

    Article  ADS  Google Scholar 

  117. LIGO Scientific Collaboration, Virgo Collaboration (2020) GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. arXiv e-prints, 2010–14527

    Google Scholar 

  118. LIGO Scientific Collaboration, Virgo Collaboration (2020) Properties and astrophysical implications of the 150 M binary black hole merger GW190521. ApJ Lett 900(1):13. https://doi.org/10.3847/2041-8213/aba493

    ADS  Google Scholar 

  119. Lin DNC, Tremaine S (1980) A reinvestigation of the standard model for the dynamics of a massive black hole in a globular cluster. ApJ 242:789–798. https://doi.org/10.1086/158513

    Article  ADS  Google Scholar 

  120. Lindblom L, Owen BJ, Brown DA (2008) Model waveform accuracy standards for gravitational wave data analysis. Phys Rev D 78(12):124020. https://doi.org/10.1103/PhysRevD.78.124020

    Article  ADS  Google Scholar 

  121. Lousto CO, Zlochower Y (2011) Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity. Phys Rev Lett 106:041101. https://doi.org/10.1103/PhysRevLett.106.041101

    Article  ADS  Google Scholar 

  122. Lützgendorf N, Kissler-Patig M, Neumayer N, Baumgardt H, Noyola E, de Zeeuw PT, Gebhardt K, Jalali B, Feldmeier A (2013) M - σrelation for intermediate-mass black holes in globular clusters. A&A 555:26. https://doi.org/10.1051/0004-6361/201321183

    Article  Google Scholar 

  123. Lynden-Bell D, Kalnajs AJ (1972) On the generating mechanism of spiral structure. MNRAS 157:1. https://doi.org/10.1093/mnras/157.1.1

    Article  ADS  Google Scholar 

  124. MacLeod M, Trenti M, Ramirez-Ruiz E (2016) The close stellar companions to intermediate-mass black holes. ApJ 819:70. https://doi.org/10.3847/0004-637X/819/1/70

    Article  ADS  Google Scholar 

  125. Maggiore M (2018) Gravitational waves: Volume 2: astrophysics and cosmology. Gravitational Waves. Oxford University Press. ISBN 9780198570899. https://books.google.de/books?id=3ZNODwAAQBAJ

  126. Magorrian J, Tremaine S (1999) Rates of tidal disruption of stars by massive central black holes. MNRAS 309:447–460

    Article  ADS  Google Scholar 

  127. Maguire K, Eracleous M, Jonker PG, MacLeod M, Rosswog S (2020) Tidal disruptions of white dwarfs: theoretical models and observational prospects. Space Sci Rev 216(3):39. https://doi.org/10.1007/s11214-020-00661-2

    Article  ADS  Google Scholar 

  128. Mandel I, Brown DA, Gair JR, Miller MC (2008) Rates and characteristics of intermediate mass ratio inspirals detectable by advanced LIGO. ApJ 681:1431–1447. https://doi.org/10.1086/588246

    Article  ADS  Google Scholar 

  129. Menou K, Haiman Z, Kocsis B (2008) Cosmological physics with black holes (and possibly white dwarfs). New Astron Rev 51(10–12):884–890. https://doi.org/10.1016/j.newar.2008.03.020

    Article  ADS  Google Scholar 

  130. Meynet G, Maeder A, Schaller G, Schaerer D, Charbonnel C (1994) Grids of massive stars with high mass loss rates. v. from 12 to 120 m_{sun}_ at z=0.001, 0.004, 0.008, 0.020 and 0.040. A&AS 103:97–105

    ADS  Google Scholar 

  131. Mezcua M (2017) Observational evidence for intermediate-mass black holes. Int J Mod Phys D 26:1730021. https://doi.org/10.1142/S021827181730021X

    Article  ADS  Google Scholar 

  132. Miller MC, Freitag M, Hamilton DP, Lauburg VM (2005) Binary encounters with supermassive black holes: zero-eccentricity LISA events. ApJ Lett 631:117–120. https://doi.org/10.1086/497335

    Article  ADS  Google Scholar 

  133. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation

    Google Scholar 

  134. Mroue AH et al (2013) Catalog of 174 binary black hole simulations for gravitational wave astronomy. Phys Rev Lett 111(24):241104. https://doi.org/10.1103/PhysRevLett.111.241104

    Article  ADS  Google Scholar 

  135. O’Leary RM, Kocsis B, Loeb A (2009) Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. MNRAS 395:2127–2146. https://doi.org/10.1111/j.1365-2966.2009.14653.x

    Article  ADS  Google Scholar 

  136. Panamarev T, Just A, Spurzem R, Berczik P, Wang L, Arca Sedda M (2019) Direct N-body simulation of the Galactic centre. Mon Not R Astron Soc 484(3):3279–3290. https://doi.org/10.1093/mnras/stz208

    Article  ADS  Google Scholar 

  137. Peebles PJE Star distribution near a collapsed object. ApJ 178:371–376 (1972). https://doi.org/10.1086/151797

    Article  ADS  Google Scholar 

  138. Peißker F, Eckart A, Zajaček M, Ali B, Parsa M (2020) S62 and S4711: indications of a population of faint fast-moving stars inside the S2 orbit—S4711 on a 7.6 yr Orbit around Sgr A*. Astrophys J 899(1):50. https://doi.org/10.3847/1538-4357/ab9c1c

  139. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:1224–1232

    Article  ADS  Google Scholar 

  140. Peters PC, Mathews J (1963) Gravitational radiation from point masses in a Keplerian Orbit. Phys Rev 131:435–440

    Article  ADS  MathSciNet  MATH  Google Scholar 

  141. Pierro V, Pinto IM, Spallicci AD, Laserra E, Recano F (2001) Fast and accurate computational tools for gravitational waveforms from binary stars with any orbital eccentricity. MNRAS 325:358–372

    Article  ADS  Google Scholar 

  142. Poisson E, Pound A, Vega I (2011) The Motion of point particles in curved spacetime. Living Rev Rel 14:7. https://doi.org/10.12942/lrr-2011-7

    Article  MATH  Google Scholar 

  143. Portegies Zwart SF, Hut P, Makino J, McMillan SLW (1998) On the dissolution of evolving star clusters. A&A 337:363–371

    ADS  Google Scholar 

  144. Press WH (1977) Gravitational radiation from sources which extend into their own wave zone. Phys Rev D 15(4):965–968. https://doi.org/10.1103/PhysRevD.15.965

    Article  ADS  Google Scholar 

  145. Preto M, Amaro-Seoane P (2010) On strong mass segregation around a massive black hole: implications for lower-frequency gravitational-wave astrophysics. ApJ Lett 708:42–46. https://doi.org/10.1088/2041-8205/708/1/L42

    Article  ADS  Google Scholar 

  146. Quinlan GD, Shapiro SL (1989) Dynamical evolution of dense clusters of compact stars. ApJ 343:725–749. https://doi.org/10.1086/167745

    Article  ADS  Google Scholar 

  147. Rauch KP, Tremaine S (1996) Resonant relaxation in stellar systems. New A 1(2):149–170. https://doi.org/10.1016/S1384-1076(96)00012-7

    Article  ADS  Google Scholar 

  148. Rees MJ (1988) Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nat 333:523–528. https://doi.org/10.1038/333523a0

    Article  ADS  Google Scholar 

  149. Rossi EM, Stone NC, Law-Smith JAP, MacLeod M, Lodato G, Dai JL, Mand el I (2020) The process of stellar tidal disruption by supermassive black holes. The first pericenter passage. arXiv e-prints, 2005–12528

    Google Scholar 

  150. Saslaw WC (1985) Gravitational physics of stellar and galactic systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  151. Sathyaprakash B, Abernathy M, Acernese F, Ajith P, Allen B, Amaro-Seoane P, Andersson N, Aoudia S, Arun K, Astone P et al (2012) Scientific objectives of Einstein Telescope. Class Quan Grav 29(12):124013. https://doi.org/10.1088/0264-9381/29/12/124013

    Article  ADS  Google Scholar 

  152. Schaller G, Schaerer D, Meynet G, Maeder A (1992) New grids of stellar models from 0.8 to 120 solar masses at z = 0.020 and z = 0.001. A&AS 96:269–331

    ADS  Google Scholar 

  153. Schmidt W (2002) Celestial mechanics in Kerr spacetime. Class Quan Grav 19:2743–2764. https://doi.org/10.1088/0264-9381/19/10/314

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. Schödel R, Gallego-Cano E, Dong H, Nogueras-Lara F, Gallego-Calvente AT, Amaro-Seoane P, Baumgardt H (2018) The distribution of stars around the Milky Way’s central black hole. II. Diffuse light from sub-giants and dwarfs. Astron Astrophys 609:27. https://doi.org/10.1051/0004-6361/201730452

  155. Schutz BF (1989) REVIEW ARTICLE: Gravitational wave sources and their detectability. Class Quan Grav 6(12):1761–1780. https://doi.org/10.1088/0264-9381/6/12/006

    Article  ADS  Google Scholar 

  156. Sesana A, Vecchio A, Eracleous M, Sigurdsson S (2008) Observing white dwarfs orbiting massive black holes in the gravitational wave and electro-magnetic window. Mon Not R Astron Soc 391(2):718–726. https://doi.org/10.1111/j.1365-2966.2008.13904.x

    Article  ADS  Google Scholar 

  157. Sesana A, Barausse E, Dotti M, Rossi EM (2014) Linking the spin evolution of massive black holes to galaxy kinematics. ApJ 794(2):104. https://doi.org/10.1088/0004-637X/794/2/104

    Article  ADS  Google Scholar 

  158. Sigurdsson S, Rees MJ (1997) Capture of stellar mass compact objects by massive black holes in galactic cusps. Mon Not R Astron Soc 284(2):318–326. https://doi.org/10.1093/mnras/284.2.318

    Article  ADS  Google Scholar 

  159. Sopuerta CF, Yunes N (2011) New Kludge scheme for the construction of approximate waveforms for extreme-mass-ratio inspirals. Phys Rev D 84(12):124060. https://doi.org/10.1103/PhysRevD.84.124060

    Article  ADS  Google Scholar 

  160. Spitzer L (1987) Dynamical evolution of globular clusters. Princeton University Press, Princeton, p 191

    Google Scholar 

  161. Spitzer LJ, Hart MH (1971) Random gravitational encounters and the evolution of spherical systems. I. method. ApJ 164:399

    Google Scholar 

  162. Spurzem R (1999) Direct n-body simulations. J Comput Appl Math 109:407–432

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. Spurzem R, Aarseth SJ (1996) Direct collisional simulation of 100000 particles past core collapse. MNRAS 282:19

    Article  ADS  Google Scholar 

  164. Sridhar S, Touma JR (2016) Stellar dynamics around a massive black hole – II. Resonant relaxation. Mon Not R Astron Soc 458(4):4143–4161. https://doi.org/10.1093/mnras/stw543

    Article  ADS  Google Scholar 

  165. Stone NC, Vasiliev E, Kesden M, Rossi EM, Perets HB, Amaro-Seoane P (2020) Rates of stellar tidal disruption. Space Sci Rev 216(3):35. https://doi.org/10.1007/s11214-020-00651-4

    Article  ADS  Google Scholar 

  166. Syer D, Ulmer A (1999) Tidal disruption rates of stars in observed galaxies. MNRAS 306: 35–42

    Article  ADS  Google Scholar 

  167. Takahashi K, Portegies Zwart SF (1998) The disruption of globular star clusters in the galaxy: A comparative analysis between fokker-planck and n-body models. ApJ Lett 503:49

    Article  ADS  Google Scholar 

  168. Teukolsky SA (2015) The Kerr metric. Class Quan Grav 32(12):124006. https://doi.org/10.1088/0264-9381/32/12/124006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. Thorne KS (1987) In: Hawking SW, Israel W (eds) Gravitational radiation, pp 330–458

    Google Scholar 

  170. Torres-Orjuela A, Chen X, Amaro-Seoane P (2020) Phase shift of gravitational waves induced by aberration. Phys Rev D 101(8):083028. https://doi.org/10.1103/PhysRevD.101.083028

    Article  ADS  MathSciNet  Google Scholar 

  171. Torres-Orjuela A, Chen X, Cao Z, Amaro-Seoane P, Peng P (2019) Detecting the beaming effect of gravitational waves. Phys Rev D 100(6):063012. https://doi.org/10.1103/PhysRevD.100.063012

    Article  ADS  Google Scholar 

  172. Tremaine S, Richstone DO, Byun Y, Dressler A, Faber SM, Grillmair C, Kormendy J, Lauer TR (1994) A family of models for spherical stellar systems. AJ 107:634–644

    Article  ADS  Google Scholar 

  173. Vázquez-Aceves V, Zwick L, Bortolas E, Capelo PR, Amaro-Seoane P, Mayer L, Chen X (2021) Revised event rates for extreme and extremely large mass-ratio inspirals. arXiv e-prints, 2108–00135. https://ui.adsabs.harvard.edu/abs/2021arXiv210800135V

  174. Visser M (2007) The Kerr spacetime: a brief introduction. arXiv e-prints, 0706–0622

    Google Scholar 

  175. Wang J, Merritt D (2004) Revised rates of stellar disruption in galactic nuclei. ApJ 600:149–161

    Article  ADS  Google Scholar 

  176. Wegg C, Gerhard O, Portail M (2017) The initial mass function of the inner galaxy measured from OGLE-III microlensing timescales. ApJ Lett 843:5. https://doi.org/10.3847/2041-8213/aa794e

    Article  ADS  Google Scholar 

  177. Wen L (2003) On the eccentricity distribution of coalescing black hole binaries driven by the kozai mechanism in globular clusters. ApJ 598:419–430. https://doi.org/10.1086/378794

    Article  ADS  Google Scholar 

  178. Will CM (2011) Inaugural article: on the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics. Proc Natl Acad Sci 108(15):5938–5945. https://doi.org/10.1073/pnas.1103127108

    Article  ADS  Google Scholar 

  179. Will CM (2014) Incorporating post-Newtonian effects in N-body dynamics. Phys Rev D 89(4):044043. https://doi.org/10.1103/PhysRevD.89.044043

    Article  ADS  Google Scholar 

  180. Zwick L, Capelo PR, Bortolas E, Mayer L, Amaro-Seoane P (2019) Improved gravitational radiation time-scales: significance for LISA and LIGO-Virgo sources. arXiv e-prints, 1911–06024

    Google Scholar 

  181. Zwick L, Capelo PR, Bortolas E, Mayer L, Amaro-Seoane P (2020) Improved gravitational radiation time-scales: significance for LISA and LIGO-Virgo sources. MNRAS 495(2):2321–2331. https://doi.org/10.1093/mnras/staa1314

    Article  ADS  Google Scholar 

  182. Zwick L, Capelo PR, Bortolas E, Vazquez-Aceves V, Mayer L, Amaro-Seoane P (2021) Improved gravitational radiation time-scales II: spin-orbit contributions and environmental perturbations. arXiv e-prints, 2102–00015. https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.1007Z

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amaro Seoane, P. (2022). The Gravitational Capture of Compact Objects by Massive Black Holes. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_17

Download citation

Publish with us

Policies and ethics