Skip to main content

Isolated Neutron Stars

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1320 Accesses

Abstract

Neutron star interiors are a fantastic laboratory for high-density physics in extreme environments. Probing this system with standard electromagnetic observations is, however, a challenging endeavor, as the radiation is only emitted by the outermost layers and is scattered by the interstellar medium. Gravitational waves, on the other hand, while challenging to detect, interact weakly with matter and are likely to carry a clean imprint of the high-density interior of the star. In particular, long-lived, i.e., “continuous” signals from isolated neutron stars can carry a signature of deformations, possibly in crystalline exotic layers of the core, or allow to study modes of oscillation, thus performing gravitational wave asteroseismology of neutron star interiors. In this article, we will review current theoretical models for continuous gravitational wave emission, and observational constraints, both electromagnetic and gravitational. Finally, we will discuss future observational possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott B et al (2017) Astrophys J Lett 848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  2. Haensel P, Potekhin AY, Yakovlev DG (2007) Neutron stars 1: equation of state and structure, vol. 326. Springer, New York

    Book  Google Scholar 

  3. Kokkotas KD, Schmidt BG (1999) Living Rev Rel 2:2

    Article  Google Scholar 

  4. Lindblom L, Owen BJ, Morsink SM (1998) Phys Rev Lett 80:4843. https://doi.org/10.1103/PhysRevLett.80.4843

    Article  ADS  Google Scholar 

  5. Thorne K (1980) Rev Mod Phys 52:299. https://doi.org/10.1103/RevModPhys.52.299

    Article  ADS  Google Scholar 

  6. Owen BJ (2010) Phys Rev D82:104002. https://doi.org/10.1103/PhysRevD.82.104002

    ADS  Google Scholar 

  7. Owen BJ et al (1998) Phys Rev D58:084020. https://doi.org/10.1103/PhysRevD.58.084020

    ADS  Google Scholar 

  8. Kokkotas KD, Schwenzer K (2016) Eur Phys J A 52(2):38. https://doi.org/10.1140/epja/i2016-16038-9

    Article  ADS  Google Scholar 

  9. Wette K et al (2008) Class Quantum Gravity 25:235011. https://doi.org/10.1088/0264-9381/25/23/235011

    Article  ADS  Google Scholar 

  10. Brambilla N et al (2014) Eur Phys J C 74(10):2981. https://doi.org/10.1140/epjc/s10052-014-2981-5

    Article  Google Scholar 

  11. Alford MG, Schmitt A, Rajagopal K, Schafer T (2008) Rev Mod Phys 80:1455. https://doi.org/10.1103/RevModPhys.80.1455

    Article  ADS  Google Scholar 

  12. Andersson N (2019) Gravitational-wave astronomy: exploring the dark side of the Universe. https://doi.org/10.1093/oso/9780198568032.001.0001/oso-9780198568032

  13. Horowitz CJ, Kadau K (2009) Phys Rev Lett 102(19):191102. https://doi.org/10.1103/PhysRevLett.102.191102

    Article  ADS  Google Scholar 

  14. Romatschke P, Romatschke U (2019) Relativistic fluid dynamics in and out of equilibrium. Cambridge monographs on mathematical physics. Cambridge University Press. https://doi.org/10.1017/9781108651998

    Book  MATH  Google Scholar 

  15. Lindblom L, Owen BJ, Ushomirsky G (2000) Phys Rev D62:084030. https://doi.org/10.1103/PhysRevD.62.084030

    ADS  Google Scholar 

  16. Shternin PS, Yakovlev DG (2008) Phys Rev D78:063006. https://doi.org/10.1103/PhysRevD.78.063006

    ADS  Google Scholar 

  17. Alford MG, Mahmoodifar S, Schwenzer K (2010) J Phys G37:125202. https://doi.org/10.1088/0954-3899/37/12/125202

    Article  ADS  Google Scholar 

  18. Wijnands R, Degenaar N, Page D (2017) J Astrophys Astron 38(3):49. https://doi.org/10.1007/s12036-017-9466-5

    Article  ADS  Google Scholar 

  19. Ushomirsky G, Cutler C, Bildsten L (2000) Mon Not R Astron Soc 319(3):902. https://doi.org/10.1046/j.1365-8711.2000.03938.x

    Article  ADS  Google Scholar 

  20. Haskell B, Zdunik JL, Fortin M, Bejger M, Wijnands R, Patruno A (2018) Astron Astrophys 620:A69. https://doi.org/10.1051/0004-6361/201833521

    Article  ADS  Google Scholar 

  21. Haskell B, Patruno A (2017) Phys Rev Lett 119(16):161103. https://doi.org/10.1103/PhysRevLett.119.161103

    Article  ADS  Google Scholar 

  22. Singh N, Haskell B, Mukherjee D, Bulik T (2020) Mon Not R Astron Soc 493(3):3866. https://doi.org/10.1093/mnras/staa442

    Article  ADS  Google Scholar 

  23. Bonazzola S, Gourgoulhon E (1996) Astron Astrophys 312:675

    ADS  Google Scholar 

  24. Lasky PD (2015) 32:e034. https://doi.org/10.1017/pasa.2015.35

  25. Cutler C (2002) Phys Rev D 66(8):084025. https://doi.org/10.1103/PhysRevD.66.084025

    Article  ADS  Google Scholar 

  26. Zhong SQ, Dai ZG, Li XD (2019) Phys Rev D 100(12):123014. https://doi.org/10.1103/PhysRevD.100.123014

    Article  ADS  Google Scholar 

  27. Suvorov AG, Mastrano A, Geppert U (2016) Mon Not R Astron Soc 459(3):3407. https://doi.org/10.1093/mnras/stw909

    Article  ADS  Google Scholar 

  28. Woan G, Pitkin MD, Haskell B, Jones DI, Lasky PD (2018) Astrophys J Lett 863(2):L40. https://doi.org/10.3847/2041-8213/aad86a

    Article  ADS  Google Scholar 

  29. Glampedakis K, Jones DI, Samuelsson L (2012) Phys Rev Lett 109(8):081103. https://doi.org/10.1103/PhysRevLett.109.081103

    Article  ADS  Google Scholar 

  30. Friedman JL, Schutz BF (1978) Astrophys J 222:281. https://doi.org/10.1086/156143

    Article  ADS  Google Scholar 

  31. Andersson N (1998) Astrophys J 502:708. https://doi.org/10.1086/305919

    Article  ADS  Google Scholar 

  32. Alford MG, Schwenzer K (2014) Phys Rev Lett 113:251102. https://doi.org/10.1103/PhysRevLett.113.251102

    Article  ADS  Google Scholar 

  33. Bondarescu R, Wasserman I (2013) Astrophys J 778:9. https://doi.org/10.1088/0004-637X/778/1/9

    Article  ADS  Google Scholar 

  34. Gusakov ME, Chugunov AI, Kantor EM (2014) Phys Rev Lett 112:151101. https://doi.org/10.1103/PhysRevLett.112.151101

    Article  ADS  Google Scholar 

  35. Paschalidis V, Stergioulas N (2017) Living Rev Rel 20(1):7. https://doi.org/10.1007/s41114-017-0008-x

    Article  Google Scholar 

  36. Doneva DD, Kokkotas KD, Pnigouras P (2015) Phys Rev D 92(10):104040. https://doi.org/10.1103/PhysRevD.92.104040

    Article  ADS  Google Scholar 

  37. Alford MG, Schwenzer K (2014) Astrophys J 781(1):26. https://doi.org/10.1088/0004-637X/781/1/26; Mon Not Roy Astron Soc 446:3631. https://doi.org/10.1093/mnras/stu2361

  38. Page D, Beznogov MV, Garibay I, Lattimer JM, Prakash M, Janka HT (2020) Astrophys J 898(2):125. https://doi.org/10.3847/1538-4357/ab93c2

    Article  ADS  Google Scholar 

  39. Haskell B, Degenaar N, Ho WCG (2012) Mon Not R Astron Soc 424(1):93. https://doi.org/10.1111/j.1365-2966.2012.21171.x

    Article  ADS  Google Scholar 

  40. Boztepe T, Göğüs E, Güver T, Schwenzer K (2020) Mon Not R Astron Soc 498:2734. https://doi.org/10.1093/mnras/staa2503

    Article  ADS  Google Scholar 

  41. Gusakov ME, Chugunov AI, Kantor EM (2014) Phys Rev D 90(6):063001. https://doi.org/10.1103/PhysRevD.90.063001

    Article  ADS  Google Scholar 

  42. Mahmoodifar S, Strohmayer T (2013) Astrophys J 773(2):140. https://doi.org/10.1088/0004-637X/773/2/140

    Article  ADS  Google Scholar 

  43. Sieniawska M, Bejger M (2019) Universe 5(11):217. https://doi.org/10.3390/universe5110217

    Article  ADS  Google Scholar 

  44. Manchester RN, Hobbs GB, Teoh A, Hobbs M (2005) Astron J 129(4):1993. https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  45. Bhattacharyya S (2020) Mon Not R Astron Soc 498(1):728. https://doi.org/10.1093/mnras/staa2304

    Article  ADS  Google Scholar 

  46. Andersson N, Antonopoulou D, Espinoza CM, Haskell B, Ho WCG (2018) Astrophys J 864(2):137. https://doi.org/10.3847/1538-4357/aad6eb

    Article  ADS  Google Scholar 

  47. Fesik L, Papa MA (2020) Astrophys J 895(1):11. https://doi.org/10.3847/1538-4357/ab8193. [Erratum: (2020) Astrophys J 897:185]

  48. Watts AL, Krishnan B, Bildsten L, Schutz BF (2008) Mon Not R Astron Soc 389(2):839. https://doi.org/10.1111/j.1365-2966.2008.13594.x

    Article  ADS  Google Scholar 

  49. The LIGO Scientific Collaboration, The Virgo Collaboration et al (2020) arXiv e-prints arXiv:2007.14251

    Google Scholar 

  50. Abbott BP et al (2019) Phys Rev D 100:122002. https://doi.org/10.1103/PhysRevD.100.122002

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.S. has been supported by the Turkish Research Council (TxxxomluxxxBITAK) via projects 117F312 and 119F073.

B.H. has been supported by the National Science Center, Poland (NCN) via grants OPUS 2019/33/B/ST9/00942, OPUS 2018/29/B/ST9/02013, and SONATA BIS 2015/18/E/ST9/00577.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brynmor Haskell or Kai Schwenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haskell, B., Schwenzer, K. (2022). Isolated Neutron Stars. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_12

Download citation

Publish with us

Policies and ethics