Skip to main content

Binary Neutron Stars

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1325 Accesses

Abstract

In this chapter, I describe the inspiral, merger, and post-merger phases of binary-neutron-star systems, focusing on the gravitational radiation they emit. After a general introduction to the formation of these systems and to the dynamics of mergers and after some comments on the state of the art of numerical simulations thereof, I descend into some details about how to link gravitational-wave measurements with the equation of state of neutron stars, whose cores have the highest density in the visible universe. This is done in two parts, based on inspiral gravitational waves and post-merger gravitational waves, respectively. The tidal deformability plays a prominent role in the former, while spectral properties of the gravitational-wave signal are important for the latter. I also present current observational capabilities and estimates for future detections and comment on the detectability of equations of state that include deconfined quark matter and possibly phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasi J et al (2015) Advanced LIGO. Class Quant Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001, 1411.4547

  2. Acernese F et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quant Grav 32(2):024,001, https://doi.org/10.1088/0264-9381/32/2/024001, 1408.3978

  3. Ajith P, Babak S, Chen Y, Hewitson M, Krishnan B, Whelan JT, Brügmann B, Diener P, Gonzalez J, Hannam M, Husa S, Koppitz M, Pollney D, Rezzolla L, Santamaría L, Sintes AM, Sperhake U, Thornburg J (2007) A phenomenological template family for black-hole coalescence waveforms. Class Quantum Gravity 24(19):S689–S699. https://doi.org/10.1088/0264-9381/24/19/S31, 0704.3764

  4. Alcubierre M (2008) Introduction to 3 + 1 numerical relativity. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780199205677.001.0001

  5. Andersson N, Kokkotas KD (1998) Towards gravitational wave asteroseismology. Mon Not R Astron Soc 299:1059–1068. https://doi.org/10.1046/j.1365-8711.1998.01840.x, arXiv:gr-qc/9711088

  6. Baiotti L (2019) Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog Part Nucl Phys 109:103714. https://doi.org/10.1016/j.ppnp.2019.103714, 1907.08534

  7. Baiotti L, Rezzolla L (2017) Binary neutron-star mergers: a review of Einstein’s richest laboratory. Rept Prog Phys 80(9):096901. https://doi.org/10.1088/1361-6633/aa67bb, 1607.03540

  8. Baiotti L, Giacomazzo B, Rezzolla L (2008) Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys Rev D 78(8):084033. https://doi.org/10.1103/PhysRevD.78.084033, 0804.0594

  9. Barkett K, Scheel MA, Haas R, Ott CD, Bernuzzi S, Brown DA, Szilágyi B, Kaplan JD, Lippuner J, Muhlberger CD, Foucart F, Duez MD (2016) Gravitational waveforms for neutron star binaries from binary black hole simulations. Phys Rev D 93(4):044064. https://doi.org/10.1103/PhysRevD.93.044064, 1509.05782

  10. Baumgarte TW, Shapiro SL (2010) Numerical relativity: solving Einstein’s equations on the computer. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139193344

    Book  Google Scholar 

  11. Baumgarte TW, Shapiro SL, Shibata M (2000) On the maximum mass of differentially rotating neutron stars. Astrophys J Lett 528:L29–L32. https://doi.org/10.1086/312425, astro-ph/9910565

  12. Bauswein A, Janka HT (2012) Measuring neutron-star properties via gravitational waves from neutron-star mergers. Phys Rev Lett 108(1):011101. https://doi.org/10.1103/PhysRevLett.108.011101, 1106.1616

  13. Bauswein A, Stergioulas N (2017) Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers. Mon Not R Astron Soc 471:4956–4965. https://doi.org/10.1093/mnras/stx1983, 1702.02567

  14. Bauswein A, Baumgarte TW, Janka HT (2013) Prompt merger collapse and the maximum mass of neutron stars. Phys Rev Lett 111(13):131101. https://doi.org/10.1103/PhysRevLett.111.131101, 1307.5191

  15. Bauswein A, Bastian NUF, Blaschke D, Chatziioannou K, Clark JA, Fischer T, Janka HT, Just O, Oertel M, Stergioulas N (2019) Equation-of-state constraints and the QCD phase transition in the era of gravitational-wave astronomy. In: American institute of physics conference series, American institute of physics conference series, vol 2127, p 020013. https://doi.org/10.1063/1.5117803, 1904.01306

  16. Bauswein A, Bastian NUF, Blaschke DB, Chatziioannou K, Clark JA, Fischer T, Oertel M (2019) Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys Rev Lett 122(6):061102. https://doi.org/10.1103/PhysRevLett.122.061102, 1809.01116

  17. Baym G, Hatsuda T, Kojo T, Powell PD, Song Y, Takatsuka T (2018) From hadrons to quarks in neutron stars: a review. Rep Prog Phys 81(5):056902. https://doi.org/10.1088/1361-6633/aaae14, 1707.04966

  18. Berger E (2014) Short-duration gamma-ray bursts. Annu Rev Astron Astrophys 52:43–105. https://doi.org/10.1146/annurev-astro-081913-035926, 1311.2603

  19. Bernuzzi S, Dietrich T, Nagar A (2015) Modeling the complete gravitational wave spectrum of neutron star mergers. Phys Rev Lett 115(9):091101. https://doi.org/10.1103/PhysRevLett.115.091101, 1504.01764

  20. Binnington T, Poisson E (2009) Relativistic theory of tidal Love numbers. Phys Rev D 80:084018. https://doi.org/10.1103/PhysRevD.80.084018, 0906.1366

  21. Blanchet L (2014) Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev Relativ 17:2. https://doi.org/10.12942/lrr-2014-2, 1310.1528

  22. Blanchet L, Iyer BR, Will CM, Wiseman AG (1996) Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class Quantum Gravity 13(4):575–584. https://doi.org/10.1088/0264-9381/13/4/002, gr-qc/9602024

  23. Breschi M, Bernuzzi S, Zappa F, Agathos M, Perego A, Radice D, Nagar A (2019) Kilohertz gravitational waves from binary neutron star remnants: time-domain model and constraints on extreme matter. Phys Rev D 100(10):104029. https://doi.org/10.1103/PhysRevD.100.104029, 1908.11418

  24. Buonanno A, Damour T (1999) Effective one-body approach to general relativistic two-body dynamics. Phys Rev D 59(8):084006. https://doi.org/10.1103/PhysRevD.59.084006, gr-qc/9811091

  25. Cardoso V, Pani P (2019) Testing the nature of dark compact objects: a status report. Living Rev Relativ 22(1):4. https://doi.org/10.1007/s41114-019-0020-4, 1904.05363

  26. Carson Z, Chatziioannou K, Haster CJ, Yagi K, Yunes N (2019) Equation-of-state insensitive relations after GW170817. Phys Rev D 99(8):083016. https://doi.org/10.1103/PhysRevD.99.083016, 1903.03909

  27. Chatziioannou K, Han S (2020) Studying strong phase transitions in neutron stars with gravitational waves. Phys Rev D 101(4):044019. https://doi.org/10.1103/PhysRevD.101.044019, 1911.07091

  28. Chatziioannou K, Haster CJ, Zimmerman A (2018) Measuring the neutron star tidal deformability with equation-of-state-independent relations and gravitational waves. Phys Rev D 97(10):104036. https://doi.org/10.1103/PhysRevD.97.104036, 1804.03221

  29. Chaurasia SV, Dietrich T, Johnson-McDaniel NK, Ujevic M, Tichy W, Brügmann B (2018) Gravitational waves and mass ejecta from binary neutron star mergers: effect of large eccentricities. Phys Rev D 98(10):104005. https://doi.org/10.1103/PhysRevD.98.104005, 1807.06857

  30. Chirenti C, de Souza GH, Kastaun W (2015) Fundamental oscillation modes of neutron stars: validity of universal relations. Phys Rev D 91(4):044034. https://doi.org/10.1103/PhysRevD.91.044034, 1501.02970

  31. Ciolfi R (2020) The key role of magnetic fields in binary neutron star mergers. Gen Relativ Gravit 52(6):59. https://doi.org/10.1007/s10714-020-02714-x, 2003.07572

  32. Cook GB, Shapiro SL, Teukolsky SA (1994) Rapidly rotating neutron stars in general relativity: realistic equations of state. Astrophys J 424:823

    Article  ADS  Google Scholar 

  33. Coughlin MW, Dietrich T, Margalit B, Metzger BD (2019) Multimessenger Bayesian parameter inference of a binary neutron star merger. Mon Not R Astron Soc 489(1):L91–L96. https://doi.org/10.1093/mnrasl/slz133, 1812.04803

  34. Damour T, Nagar A (2009) Relativistic tidal properties of neutron stars. Phys Rev D 80(8):084035. https://doi.org/10.1103/PhysRevD.80.084035, 0906.0096

  35. Dietrich T, Bernuzzi S, Brügmann B, Ujevic M, Tichy W (2018) Numerical relativity simulations of precessing binary neutron star mergers. Phys Rev D 97(6):064002. https://doi.org/10.1103/PhysRevD.97.064002, 1712.02992

  36. Dietrich T, Khan S, Dudi R, Kapadia SJ, Kumar P, Nagar A, Ohme F, Pannarale F, Samajdar A, Bernuzzi S, Carullo G, Del Pozzo W, Haney M, Markakis C, Pürrer M, Riemenschneider G, Setyawati YE, Tsang KW, Van Den Broeck C (2019) Matter imprints in waveform models for neutron star binaries: tidal and self-spin effects. Phys Rev D 99(2):024029. https://doi.org/10.1103/PhysRevD.99.024029, 1804.02235

  37. Doneva DD, Kokkotas KD (2015) Asteroseismology of rapidly rotating neutron stars: an alternative approach. Phys Rev D 92(12):124004. https://doi.org/10.1103/PhysRevD.92.124004, 1507.06606

  38. Duez MD, Zlochower Y (2019) Numerical relativity of compact binaries in the 21st century. Rep Prog Phys 82(1):016902. https://doi.org/10.1088/1361-6633/aadb16, 1808.06011

  39. East WE, Paschalidis V, Pretorius F (2016) Equation of state effects and one-arm spiral instability in hypermassive neutron stars formed in eccentric neutron star mergers. Class Quantum Gravity 33(24):244004. https://doi.org/10.1088/0264-9381/33/24/244004, 1609.00725

  40. Easter PJ, Ghonge S, Lasky PD, Casey AR, Clark JA, Hernand ez Vivanco F, Chatziioannou K (2020) Detection and parameter estimation of binary neutron star merger remnants. Phys Rev D 102(4):043011. https://doi.org/10.1103/PhysRevD.102.043011, 2006.04396

  41. Essick R, Vitale S, Weinberg NN (2016) Impact of the tidal p-g instability on the gravitational wave signal from coalescing binary neutron stars. Phys Rev D 94(10):103012. https://doi.org/10.1103/PhysRevD.94.103012, 1609.06362

  42. Fairhurst S (2014) Improved source localization with LIGO-India. J Phys Conf Ser 484(1):012007. https://doi.org/10.1088/1742-6596/484/1/012007, 1205.6611

  43. Favata M (2014) Systematic parameter errors in inspiraling neutron star binaries. Phys Rev Lett 112(10):101101. https://doi.org/10.1103/PhysRevLett.112.101101, 1310.8288

  44. Flanagan ÉÉ, Hinderer T (2008) Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys Rev D 77(2):021502. https://doi.org/10.1103/PhysRevD.77.021502, 0709.1915

  45. Flanagan ÉÉ, Racine É (2007) Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries. Phys Rev D 75(4):044001. https://doi.org/10.1103/PhysRevD.75.044001, gr-qc/0601029

  46. Fragione G, Grishin E, Leigh NWC, Perets HB, Perna R (2019) Black hole and neutron star mergers in galactic nuclei. Mon Not R Astron Soc 1560. https://doi.org/10.1093/mnras/stz1651, 1811.10627

  47. Gieg H, Dietrich T, Ujevic M (2019) Simulating binary neutron stars with hybrid equation of states: gravitational waves, electromagnetic signatures, and challenges for numerical relativity. Particles 2(3):365–384, 1908.03135

    Article  Google Scholar 

  48. Gondán L, Kocsis B (2019) Measurement accuracy of inspiraling eccentric neutron star and black hole binaries using gravitational waves. Astrophys J 871:178. https://doi.org/10.3847/1538-4357/aaf893, 1809.00672

  49. Gourgoulhon E (2012) 3+1 formalism in general relativity, Lecture notes in physics, vol 846. Springer, Berlin. https://doi.org/10.1007/978-3-642-24525-1

    Book  Google Scholar 

  50. Hanauske M, Takami K, Bovard L, Rezzolla L, Font JA, Galeazzi F, Stöcker H (2017) Rotational properties of hypermassive neutron stars from binary mergers. Phys Rev D 96(4):043004. https://doi.org/10.1103/PhysRevD.96.043004, 1611.07152

  51. Ho WCG, Jones DI, Andersson N, Espinoza CM (2020) Gravitational waves from transient neutron star f-mode oscillations. Phys Rev D 101(10):103009. https://doi.org/10.1103/PhysRevD.101.103009, 2003.12082

  52. Hotokezaka K, Kiuchi K, Kyutoku K, Muranushi T, Sekiguchi Yi, Shibata M, Taniguchi K (2013) Remnant massive neutron stars of binary neutron star mergers: evolution process and gravitational waveform. Phys Rev D 88(4):044026. https://doi.org/10.1103/PhysRevD.88.044026, 1307.5888

  53. Ivanova N, Justham S, Chen X, De Marco O, Fryer CL, Gaburov E, Ge H, Glebbeek E, Han Z, Li XD, Lu G, Marsh T, Podsiadlowski P, Potter A, Soker N, Taam R, Tauris TM, van den Heuvel EPJ, Webbink RF (2013) Common envelope evolution: where we stand and how we can move forward. Astron Astrophys Rev 21:59. https://doi.org/10.1007/s00159-013-0059-2, 1209.4302

  54. Jiménez Forteza X, Abdelsalhin T, Pani P, Gualtieri L (2018) Impact of high-order tidal terms on binary neutron-star waveforms. Phys Rev D 98(12):124014. https://doi.org/10.1103/PhysRevD.98.124014, 1807.08016

  55. Kagra Collaboration, Akutsu T, Ando M, Arai K, Arai Y, Araki S, Araya A, Aritomi N, Asada H, Aso Y, Atsuta S, Awai K, Bae S, Baiotti L, Barton MA, Cannon K, Capocasa E, Chen CS, Chiu TW, Cho K, Chu YK, Craig K, Creus W, Doi K, Eda K, Enomoto Y, Flaminio R, Fujii Y, Fujimoto MK, Fukunaga M, Fukushima M, Furuhata T, Haino S, Hasegawa K, Hashino K, Hayama K, Hirobayashi S, Hirose E, Hsieh BH, Huang CZ, Ikenoue B, Inoue Y, Ioka K, Itoh Y, Izumi K, Kaji T, Kajita T, Kakizaki M, Kamiizumi M, Kanbara S, Kanda N, Kanemura S, Kaneyama M, Kang G, Kasuya J, Kataoka Y, Kawai N, Kawamura S, Kawasaki T, Kim C, Kim J, Kim JC, Kim WS, Kim YM, Kimura N, Kinugawa T, Kirii S, Kitaoka Y, Kitazawa H, Kojima Y, Kokeyama K, Komori K, Kong AKH, Kotake K, Kozu R, Kumar R, Kuo HS, Kuroyanagi S, Lee HK, Lee HM, Lee HW, Leonardi M, Lin CY, Lin FL, Liu GC, Liu Y, Majorana E, Mano S, Marchio M, Matsui T, Matsushima F, Michimura Y, Mio N, Miyakawa O, Miyamoto A, Miyamoto T, Miyo K, Miyoki S, Morii W, Morisaki S, Moriwaki Y, Morozumi T, Musha M, Nagano K, Nagano S, Nakamura K, Nakamura T, Nakano H, Nakano M, Nakao K, Narikawa T, Naticchioni L, Nguyen Quynh L, Ni WT, Nishizawa A, Obuchi Y, Ochi T, Oh JJ, Oh SH, Ohashi M, Ohishi N, Ohkawa M, Okutomi K, Ono K, Oohara K, Ooi CP, Pan SS, Park J, Peña Arellano FE, Pinto I, Sago N, Saijo M, Saitou S, Saito Y, Sakai K, Sakai Y, Sakai Y, Sasai M, Sasaki M, Sasaki Y, Sato S, Sato N, Sato T, Sekiguchi Y, Seto N, Shibata M, Shimoda T, Shinkai H, Shishido T, Shoda A, Somiya K, Son EJ, Suemasa A, Suzuki T, Suzuki T, Tagoshi H, Tahara H, Takahashi H, Takahashi R, Takamori A, Takeda H, Tanaka H, Tanaka K, Tanaka T, Tanioka S, Tapia San Martin EN, Tatsumi D, Tomaru T, Tomura T, Travasso F, Tsubono K, Tsuchida S, Uchikata N, Uchiyama T, Uehara T, Ueki S, Ueno K, Uraguchi F, Ushiba T, van Putten MHPM, Vocca H, Wada S, Wakamatsu T, Watanabe Y, Xu WR, Yamada T, Yamamoto A, Yamamoto K, Yamamoto K, Yamamoto S, Yamamoto T, Yokogawa K, Yokoyama J, Yokozawa T, Yoon TH, Yoshioka T, Yuzurihara H, Zeidler S, Zhu ZH (2019) KAGRA: 2.5 generation interferometric gravitational wave detector. Nat Astron 3:35–40. https://doi.org/10.1038/s41550-018-0658-y, 1811.08079

  56. Kaspi VM, Beloborodov AM (2017) Magnetars. Annu Rev Astron Astrophys 55(1):261–301. https://doi.org/10.1146/annurev-astro-081915-023329,

    Article  ADS  Google Scholar 

  57. Kastaun W, Ohme F (2019) Finite tidal effects in GW170817: observational evidence or model assumptions? Phys Rev D 100(10):103023. https://doi.org/10.1103/PhysRevD.100.103023, 1909.12718

  58. Kawamura T, Giacomazzo B, Kastaun W, Ciolfi R, Endrizzi A, Baiotti L, Perna R (2016) Binary neutron star mergers and short gamma-ray bursts: Effects of magnetic field orientation, equation of state, and mass ratio. Phys Rev D 94(6):064012. https://doi.org/10.1103/PhysRevD.94.064012, 1607.01791

  59. Kiuchi K, Kawaguchi K, Kyutoku K, Sekiguchi Y, Shibata M (2020) Sub-radian-accuracy gravitational waves from coalescing binary neutron stars in numerical relativity. II. Systematic study on the equation of state, binary mass, and mass ratio. Phys Rev D 101(8):084006. https://doi.org/10.1103/PhysRevD.101.084006, 1907.03790

  60. Kokkotas K, Schmidt B (1999) Quasi-normal modes of stars and black holes. Living Rev Relativ 2:2. https://doi.org/10.12942/lrr-1999-2, gr-qc/9909058

  61. Köppel S, Bovard L, Rezzolla L (2019) A general-relativistic determination of the threshold mass to prompt collapse in binary neutron star mergers. Astrophys J Lett 872(1):L16. https://doi.org/10.3847/2041-8213/ab0210, 1901.09977

  62. Lackey BD, Bernuzzi S, Galley CR, Meidam J, Van Den Broeck C (2017) Effective-one-body waveforms for binary neutron stars using surrogate models. Phys Rev D 95(10):104036. https://doi.org/10.1103/PhysRevD.95.104036, 1610.04742

  63. Landry P, Poisson E (2015) Gravitomagnetic response of an irrotational body to an applied tidal field. Phys Rev D 91(10):104026. https://doi.org/10.1103/PhysRevD.91.104026, 1504.06606

  64. Landry P, Essick R, Chatziioannou K (2020) Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations. Phys Rev D 101(12):123007. https://doi.org/10.1103/PhysRevD.101.123007, 2003.04880

  65. Ma S, Yu H, Chen Y (2020) Excitation of f-modes during mergers of spinning binary neutron star. Phys Rev D 101(12):123020. https://doi.org/10.1103/PhysRevD.101.123020, 2003.02373

  66. Metzger BD (2019) Kilonovae. Living Rev Relativ 23(1):1. https://doi.org/10.1007/s41114-019-0024-0, 1910.01617

  67. Most ER, Papenfort LJ, Dexheimer V, Hanauske M, Schramm S, Stöcker H, Rezzolla L (2019) Signatures of quark-hadron phase transitions in general-relativistic neutron-star mergers. Phys Rev Lett 122(6):061101. https://doi.org/10.1103/PhysRevLett.122.061101, 1807.03684

  68. Oppenheimer JR, Volkoff GM (1939) On massive neutron cores. Phys Rev 55(4):374–381. https://doi.org/10.1103/PhysRev.55.374

    Article  ADS  Google Scholar 

  69. Pani P, Gualtieri L, Abdelsalhin T, Jiménez-Forteza X (2018) Magnetic tidal Love numbers clarified. Phys Rev D 98(12):124023. https://doi.org/10.1103/PhysRevD.98.124023, 1810.01094

  70. Papenfort LJ, Gold R, Rezzolla L (2018) Dynamical ejecta and nucleosynthetic yields from eccentric binary neutron-star mergers. Phys Rev D 98:104028. https://doi.org/10.1103/PhysRevD.98.104028, 1807.03795

  71. Paschalidis V, Stergioulas N (2017) Rotating stars in relativity. Living Rev Relativ 20:7. https://doi.org/10.1007/s41114-017-0008-x, 1612.03050

  72. Pnigouras P (2019) Gravitational-wave-driven tidal secular instability in neutron star binaries. Phys Rev D 100(6):063016. https://doi.org/10.1103/PhysRevD.100.063016, 1909.04490

  73. Poisson E, Will CM (2014) Gravity. Cambridge University Press. https://doi.org/10.1017/cbo9781139507486

    Book  Google Scholar 

  74. Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27:194002. https://doi.org/10.1088/0264-9381/27/19/194002

    Article  ADS  Google Scholar 

  75. Radice D, Bernuzzi S, Del Pozzo W, Roberts LF, Ott CD (2017) Probing extreme-density matter with gravitational-wave observations of binary neutron star merger remnants. Astrophys J Lett 842:L10. https://doi.org/10.3847/2041-8213/aa775f, 1612.06429

  76. Raithel C, Özel F, Psaltis D (2018) Tidal deformability from GW170817 as a direct probe of the neutron star radius. Astrophys J 857:L23. https://doi.org/10.3847/2041-8213/aabcbf, 1803.07687

  77. Ravi V, Lasky PD (2014) The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts. Mon Not R Astron Soc 441:2433–2439. https://doi.org/10.1093/mnras/stu720

    Article  ADS  Google Scholar 

  78. Read JS, Lackey BD, Owen BJ, Friedman JL (2009) Constraints on a phenomenologically parametrized neutron-star equation of state. Phys Rev D 79(12):124032. https://doi.org/10.1103/PhysRevD.79.124032, 0812.2163

  79. Read JS, Baiotti L, Creighton JDE, Friedman JL, Giacomazzo B, Kyutoku K, Markakis C, Rezzolla L, Shibata M, Taniguchi K (2013) Matter effects on binary neutron star waveforms. Phys Rev D 88(4):044042. https://doi.org/10.1103/PhysRevD.88.044042, 1306.4065

  80. Reitze D, Adhikari RX, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown DA, Chen Y, Coyne D, Eisenstein R, Evans M, Fritschel P, Hall ED, Lazzarini A, Lovelace G, Read J, Sathyaprakash BS, Shoemaker D, Smith J, Torrie C, Vitale S, Weiss R, Wipf C, Zucker M (2019) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull Am Astron Soc vol 51, p 35. 1907.04833

    Google Scholar 

  81. Rezzolla L, Takami K (2016) Gravitational-wave signal from binary neutron stars: a systematic analysis of the spectral properties. Phys Rev D 93(12):124051. https://doi.org/10.1103/PhysRevD.93.124051, 1604.00246

  82. Rezzolla L, Zanotti O (2013) Relativistic hydrodynamics. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198528906.001.0001

    Book  Google Scholar 

  83. Shibata M (2016) Numerical relativity. World Scientific, Singapore. https://doi.org/10.1142/9692

    MATH  Google Scholar 

  84. Shibata M, Hotokezaka K (2019) Merger and mass ejection of neutron star binaries. Annu Rev Nucl Part Sci 69:41–64. https://doi.org/10.1146/annurev-nucl-101918-023625, 1908.02350

  85. Sieniawska M, Turczański W, Bejger M, Zdunik JL (2019) Tidal deformability and other global parameters of compact stars with strong phase transitions. Astron Astrophys 622:A174. https://doi.org/10.1051/0004-6361/201833969, 1807.11581

  86. Takami K, Rezzolla L, Baiotti L (2015) Spectral properties of the post-merger gravitational-wave signal from binary neutron stars. Phys Rev D 91(6):064001. https://doi.org/10.1103/PhysRevD.91.064001, 1412.3240

  87. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, et al (2019) Properties of the binary neutron star merger GW170817. Phys Rev X 9(1):011001. https://doi.org/10.1103/PhysRevX.9.011001, 1805.11579

  88. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, et al (2019) Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys J 875(2):160. https://doi.org/10.3847/1538-4357/ab0f3d, 1810.02581

  89. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, et al (2019) Tests of general relativity with GW170817. Phys Rev Lett 123(1):011102. https://doi.org/10.1103/PhysRevLett.123.011102, 1811.00364

  90. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott BP, Abbott R, Abbott TD, Abraham S, Acernese F, Ackley K, Adams C, Adhikari RX, et al (2020) GW190425: observation of a compact binary coalescence with total mass ∼ 3.4 M. Astrophys J Lett 892(1):L3. https://doi.org/10.3847/2041-8213/ab75f5, 2001.01761

  91. Thielemann FK, Eichler M, Panov IV, Wehmeyer B (2017) Neutron star mergers and nucleosynthesis of heavy elements. Annu Rev Nucl Part Sci 67:253–274. https://doi.org/10.1146/annurev-nucl-101916-123246, 1710.02142

  92. Thornburg J (2007) Event and apparent horizon finders for 3 + 1 numerical relativity. Living Rev Relativ 10(1):3. https://doi.org/10.12942/lrr-2007-3

    Article  ADS  Google Scholar 

  93. Tsang D (2013) Shattering flares during close encounters of neutron stars. Astrophys J 777:103. https://doi.org/10.1088/0004-637X/777/2/103, 1307.3554

  94. Tsang KW, Dietrich T, Van Den Broeck C (2019) Modeling the postmerger gravitational wave signal and extracting binary properties from future binary neutron star detections. Phys Rev D 100(4):044047. https://doi.org/10.1103/PhysRevD.100.044047, 1907.02424

  95. Vincent T, Foucart F, Duez MD, Haas R, Kidder LE, Pfeiffer HP, Scheel MA (2020) Unequal mass binary neutron star simulations with neutrino transport: ejecta and neutrino emission. Phys Rev D 101(4):044053. https://doi.org/10.1103/PhysRevD.101.044053, 1908.00655

  96. Wade L, Creighton JDE, Ochsner E, Lackey BD, Farr BF, Littenberg TB, Raymond V (2014) Systematic and statistical errors in a Bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors. Phys Rev D 89(10):103012. https://doi.org/10.1103/PhysRevD.89.103012, 1402.5156

  97. Yagi K, Yunes N (2016) Binary love relations. Class Quantum Gravity 33(13):13LT01. https://doi.org/10.1088/0264-9381/33/13/13LT01, 1512.02639

  98. Yagi K, Yunes N (2017) Approximate universal relations for neutron stars and quark stars. Phys Rep 681:1–72. https://doi.org/10.1016/j.physrep.2017.03.002, 1608.02582

  99. Yang H, Paschalidis V, Yagi K, Lehner L, Pretorius F, Yunes N (2018) Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking. Phys Rev D 97(2):024049. https://doi.org/10.1103/PhysRevD.97.024049, 1707.00207

Download references

Acknowledgements

Partial support has come from JSPS Grant-in-Aid for Scientific Research (C) No. T18K036220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Baiotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baiotti, L. (2022). Binary Neutron Stars. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_11

Download citation

Publish with us

Policies and ethics