Skip to main content

Environmental Noise in Gravitational-Wave Interferometers

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

The first 20 years of operation of gravitational-wave interferometers have shown that, despite the high degree of isolation, detectors are affected by influences from the surrounding environment. Seismic, acoustic and electromagnetic disturbances of natural or human origin may limit the interferometer sensitivity or potentially generate transients of non-astrophysical origin. The study and reduction of environmental influences has been part of the effort that eventually led to the detection of gravitational waves. In this paper, we present a review of environmental noise sources and coupling paths, investigation and mitigation methods. We refer to the experience gained during the commissioning and operation of the existing gravitational-wave interferometers and the most recent documentation on the subject. We wish to share indications useful for the design and commissioning of future terrestrial gravitational-wave detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  MathSciNet  ADS  Google Scholar 

  2. Aasi J et al (2015) Advanced LIGO. Class Quantum Gravity 32(7):074001

    Article  ADS  Google Scholar 

  3. Acernese F et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Gravity 32(2):024001

    Article  ADS  Google Scholar 

  4. Akutsu T et al (2019) KAGRA: 2.5 generation interferometric gravitational wave detector. Nat Astron 3:35–40

    Article  ADS  Google Scholar 

  5. Dooley KL et al (2016) GEO 600 and the GEO-HF upgrade program: successes and challenges. Class Quantum Gravity 33(7):075009

    Article  ADS  Google Scholar 

  6. Sathyaprakash BS et al (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12(1):1–141

    Article  MATH  ADS  Google Scholar 

  7. Pitkin M et al (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Relativ 14:5

    Article  MATH  ADS  Google Scholar 

  8. Abbott BP et al (2020) A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals. Class Quantum Gravity 37:5

    Google Scholar 

  9. Schumann W (1952) Ückber die strahlungslosen Eigenschwingungen einer leitenden Kugel die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Zeitschrift Naturforschung Teil A 7:149

    Article  MATH  ADS  Google Scholar 

  10. Sentman DD (1995) Schumann resonances, In: Volland, H., Ed., Handbook of Atmospheric Electrodynamics. CRC Press, Boca Raton. 267–296

    Google Scholar 

  11. Coughlin MW et al (2018) Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Phys Rev D 97:102007

    Article  ADS  Google Scholar 

  12. Saulson PR (2013) Gravitational wave detection: principles and practice. Comptes Rendus Physique 14(4):288–305

    Article  ADS  Google Scholar 

  13. Pitkin M et al (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Relativ 15:5

    Article  MATH  ADS  Google Scholar 

  14. Rocchi A et al (2012) Thermal effects and their compensation in advanced virgo. J Phys Conf Ser 363:012016

    Article  Google Scholar 

  15. Acernese F et al (2019) Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett 123:231108

    Article  ADS  Google Scholar 

  16. Tse M et al (2019) Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys Rev Lett 123:231107

    Article  ADS  Google Scholar 

  17. Buikema A et al (2020) Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys Rev D 102:062003

    Article  ADS  Google Scholar 

  18. Beccaria M et al (1997) Extending the VIRGO gravitational wave detection band down to a few Hz: metal blade springs and magnetic antisprings. Nucl Instrum Methods A 394:397–408

    Article  ADS  Google Scholar 

  19. Somiya K et al (2012) Detector configuration of KAGRA – the Japanese cryogenic gravitational-wave detector. Class Quantum Gravity 29(12):124007

    Article  ADS  Google Scholar 

  20. Matichard F et al (2015) Seismic isolation of advanced LIGO: review of strategy, instrumentation and performance. Class Quantum Gravity 32:185003

    Article  ADS  Google Scholar 

  21. Plissi MV et al (2000) GEO 600 triple pendulum suspension system: seismic isolation and control. Rev Sci 71(6):2539–2545

    Article  ADS  Google Scholar 

  22. Losurdo G et al (2002) The inertial damping of the VIRGO Superattenuator and the residual motion of the mirror. Class Quantum Gravity 19(7):1631–1637

    Article  ADS  Google Scholar 

  23. Acernese F et al (2020) The advanced virgo longitudinal control system for the o2 observing run. Astropart Phys 116:102386

    Article  Google Scholar 

  24. Nguyen P et al (2021) Environmental noise in advanced LIGO detectors. https://arxiv.org/abs/2101.09935

  25. Abbott BP et al (2016) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class Quantum Gravity 33:134001

    Article  ADS  Google Scholar 

  26. Fiori I et al (2020) The hunt for environmental noise in Virgo during the third observing run. Galaxy 8(4):82

    Article  ADS  Google Scholar 

  27. Akutsu T et al (2020) Overview of KAGRA: detector design and construction history. Progress Theor Exp Phys ptaa125

    Google Scholar 

  28. Covas PB et al (2018) Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of advanced LIGO. Phys Rev D 97:082002

    Article  ADS  Google Scholar 

  29. Venkateswara K (2017) Subtracting tilt from a horizontal seismometer using a ground-rotation sensor. Bull Seismol Soc Am 107(2):709–717

    Article  Google Scholar 

  30. Allocca, A on behalf of the ARCHIMEDES and Virgo Collaborations (2020) Recent developments on beam-balance tiltmeter. https://tds.virgo-gw.eu/ql/?c=16082

  31. Trnkoczy A et al (2002) New manual of seismological observatory practice, chapter 7, pp 1–108. Site Selection, Preparation and Installation of Seismic Stations. GeoForschungsZentrum Potsdam

    Google Scholar 

  32. Martynov D (2015) Lock acquisition and sensitivity analysis of advanced LIGO interferometers. PhD thesis, CALTECH. Appendix A

    Google Scholar 

  33. Gazzetti A et al (2019) Realization of a wind shield for infrasound. https://tds.virgo-gw.eu/ql/?c=14569

  34. KMS Technologies, KJT Enterprises Inc. Induction coil Magnetometer LEMI-120. https://kmstechnologies.com/documents/LEMI-120_UserManual.pdf

  35. Berni F et al (2012) The detector monitoring system. https://tds.virgo-gw.eu/ql/?c=9005

  36. Talukder D (2015) LIGO channel activity monitor. https://github.com/dipongkar/ligocam

  37. Aasi J et al (2015) Characterization of the LIGO detectors during their sixth science run. Class Quantum Gravity 32(11):115012

    Article  ADS  Google Scholar 

  38. Effler A et al (2015) Environmental influences on the LIGO gravitational wave detectors during the 6th science run. Class Quantum Gravity 32:3

    Article  Google Scholar 

  39. Coughlin MW (2010) Noise line identification in LIGO S6 and Virgo VSR2. J Phys Conf Ser 243:012010

    Article  Google Scholar 

  40. Christensen N (2010) LIGO S6 detector characterization studies. Class Quantum Gravity 27:19

    Google Scholar 

  41. Acernese F et al (2008) Noise studies during the first Virgo science run and after. Class Quantum Gravity 25(18):184003

    Article  ADS  Google Scholar 

  42. Acernese F et al (2007) Analysis of noise lines in the virgo c7 data. Class Quantum Gravity 24(19):S433–S443

    Article  MATH  Google Scholar 

  43. Robinet F et al (2012) The characterization of Virgo data and its impact on gravitational-wave searches. Class Quantum Gravity 29:15

    Google Scholar 

  44. Schofield RMS. LIGO environmental influences. https://people.ligo-wa.caltech.edu/~robert.schofield/iLIGOenvironmentalInflueinces.htm

  45. Virgo electronic logbook. https://logbook.virgo-gw.eu/virgo/

  46. LIGO Hanford electronic logbook. https://alog.ligo-wa.caltech.edu/aLOG/

  47. LIGO Livingston electronic logbook. https://alog.ligo-la.caltech.edu/aLOG/

  48. KAGRA electronic logbook. http://klog.icrr.u-tokyo.ac.jp/osl/

  49. Verkindt D (2019) Advanced Virgo: from detector monitoring to gravitational wave alerts. In: Trân Thanh Vân J, Dumarchez J (ed) 54th Rencontres de Moriond – Gravitation

    Google Scholar 

  50. Robinet F et al (2020) Omicron: a tool to characterize transient noise in gravitational-wave detectors. SoftwareX 12:100620

    Article  Google Scholar 

  51. Vajente G (2008) Analysis of sensitivity and noise sources for the Virgo gravitational wave interferometer. PhD thesis, Scuola normale superiore di Pisa, May 2008. Part II

    Google Scholar 

  52. Accadia T et al (2012) The NoEMi (Noise Frequency Event Miner) framework. J Phys Conf Ser 363:012037

    Article  Google Scholar 

  53. Di Renzo F (2020) Characterisation and mitigation of non-stationary noise in Advance Gravitational Wave Detectors. PhD thesis, University of Pisa

    Google Scholar 

  54. Walker M et al (2018) Identifying correlations between LIGO’s astronomical range and auxiliary sensors using lasso regression. Class Quantum Gravity 35(22):225002

    Article  ADS  Google Scholar 

  55. Swinkels B (2018) Brute force correlation of drifting lines. https://tds.virgo-gw.eu/ql/?c=13316

  56. Patricelli B, Cella G (2019) Tools for modulated noise study. https://tds.virgo-gw.eu/ql/?c=14409

  57. Piergiovanni F (2015) Detectors characterization and low-latency search of gravitational waves from binary neutron stars. PhD thesis, University of Urbino. Chapter 3

    Google Scholar 

  58. Tiwari V et al (2015) Regression of environmental noise in LIGO data. Class Quantum Gravity 32(16):165014

    Article  ADS  Google Scholar 

  59. Longo A et al (2020) Scattered light noise characterisation at the Virgo interferometer with tvf-EMD adaptive algorithm. Class Quantum Gravity 37(14):145011

    Article  MathSciNet  ADS  Google Scholar 

  60. Valdes G et al (2017) A Hilbert-Huang transform method for scattering identification in LIGO. Class Quantum Gravity 34(23):235009

    Article  ADS  Google Scholar 

  61. Hemming G. The open source logbook. https://tds.virgo-gw.eu/ql/?c=7472

  62. Swinkels B (2018) New lines in DARM. https://logbook.virgo-gw.eu/virgo/?r=43422

  63. Hardwick TC (2019) High power and optomechanics in Advanced LIGO detectors. LSU Doctoral Dissertations 5107. PhD thesis, Lousiana State University. Chapter 3

    Google Scholar 

  64. Cirone A et al (2019) Investigation of magnetic noise in Advanced Virgo. Class Quantum Gravity 36:225004

    Article  ADS  Google Scholar 

  65. Koley S (2020) Sensor networks to measure environmental noise at gravitational wave detector sites. PhD thesis, Vrije U., Amsterdam

    Google Scholar 

  66. Washimi T et al (2020) Method for environmental noise estimation via injection tests for ground-based gravitational wave detectors

    Google Scholar 

  67. Menendez A et al (2019) RF injection from remote with external antenna. https://logbook.virgo-gw.eu/virgo/?r=47123

  68. Menendez A et al (2019) Magnetic injections in CEB, NEB, WEB. https://logbook.virgo-gw.eu/virgo/?r=46198

    Google Scholar 

  69. Fiori I, Paoletti F (2018) Acoustic injections CEB October 24 (sound tracks). https://logbook.virgo-gw.eu/virgo/?r=43392

  70. Acernese F et al (2007) Noise budget and noise hunting in VIRGO. In: Trân Thanh Vân J, Dumarchez J (ed) 42nd Rencontres de Moriond Gravitational Waves and Experimental Gravity, pp 147–152

    Google Scholar 

  71. W Ä…s M. Noise budget before the engineering run. https://logbook.virgo-gw.eu/virgo/?r=42323

  72. Cannon K et al (2012) Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J 748(2):136

    Article  ADS  Google Scholar 

  73. Usman SA et al (2016) The PyCBC search for gravitational waves from compact binary coalescence. Class Quantum Gravity 33(21):215004

    Article  ADS  Google Scholar 

  74. LIGO Scientific Collaboration and Virgo Collaboration (2019) Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Phys Rev D 99:122002

    Article  ADS  Google Scholar 

  75. Klimenko S et al (2008) A coherent method for detection of gravitational wave bursts. Class Quantum Gravity 25(11):114029

    Article  ADS  Google Scholar 

  76. Schofield RMS et al (2018) PEM vetting report for GW150914. https://dcc.ligo.org/LIGO-T1800505/public

  77. Schofield RMS (2018) Lightning, LIGO and GW150914. https://dcc.ligo.org/LIGO-T1800506/public

  78. LIGO Scientific Collaboration and Virgo Collaboration (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9:031040

    Google Scholar 

  79. Peterson J (1993) Observations and modeling of seismic background noise. U.S. Geolog Surv Open-File Rep 93:322

    Google Scholar 

  80. Gusev AV et al (2009) Geophysical noise in the Virgo gravitational antenna. Fundam Probl Metrol 52:111–116

    Google Scholar 

  81. Aki K, Richards PG (2002) Quantitative seismology. Geology seismology. University Science Books, Sausalito

    Google Scholar 

  82. Coughlin MW et al (2017) Limiting the effects of earthquakes on gravitational-wave interferometers. Class Quantum Gravity 34(4):044004

    Article  ADS  Google Scholar 

  83. Biscans S et al (2018) Control strategy to limit duty cycle impact of earthquakes on the LIGO gravitational-wave detectors. Class Quantum Gravity 35(5):055004

    Article  ADS  Google Scholar 

  84. Boschi V et al (2019) Superattenuator performance during O3. https://tds.virgo-gw.eu/ql/?c=14715

  85. Mukund N et al (2019) Effect of induced seismicity on advanced gravitational wave interferometers Class Quantum Gravity 36(10):10LT01

    Google Scholar 

  86. Olivieri M et al (2019) Earthquake early warning system for Virgo: a design study. https://tds.virgo-gw.eu/ql/?c=14142

  87. Ardhuin F et al (2015) How ocean waves rock the Earth: two mechanisms explain microseisms with periods 3 to 300 s. Geophys Res Lett 42(3):765–772

    Article  ADS  Google Scholar 

  88. Cessaro R (1994) Sources of primary and secondary microseisms. Bull Seismol Soc Am 84:142–148

    Article  Google Scholar 

  89. Marchetti E, Mazzoni M (2004) Evidence of oceanic microseism as a source of low-frequency seismic signal recorded at Virgo. https://tds.virgo-gw.eu/ql/?c=1502

  90. Agnew DA (1986) Strainmeters and tiltmeters. Rev Geophys 24:579–624

    Article  ADS  Google Scholar 

  91. Harms J et al (2010) Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. Class Quantum Gravity 27:22

    Article  Google Scholar 

  92. Ross M et al (2020) Towards windproofing LIGO: reducing the effect of wind-driven floor tilt by using rotation sensors in active seismic isolation. Class Quantum Gravity 37(18):185018

    Article  ADS  Google Scholar 

  93. Schofield RMS (2015) Wind tilt is very local and is lowest in the beer garden. https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=19682

  94. Schofield RMS (2016) 17 MPH wind-induced low-f tilt and vibration coherence less than 0.5 at 5m at EY. https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=27170

  95. Trozzo L (2018) Low frequency optimization and performance of advanced Virgo seismic isolation system. PhD thesis, University of Siena. Chapter 8

    Google Scholar 

  96. Majorana E (2017) Ruggi’s global inverted pendulum control. https://dcc.ligo.org/LIGO-G1700891/public

  97. Lanz B et al (2020) Impact of the wind fences. https://dcc.ligo.org/LIGO-G2000112/public

  98. Valdes G et al (2020) Noise from thunderstorms coupling into LIGO. https://dcc.ligo.org/LIGO-P2000004

  99. Daw EJ et al (2004) Long term study of the seismic environment at LIGO. Class Quantum Gravity 21:2255–2273

    Article  MATH  ADS  Google Scholar 

  100. Acernese F et al (2004) Properties of seismic noise at the Virgo site. Class Quantum Gravity 21(5):S433–S440

    Article  MATH  Google Scholar 

  101. Schofield RMS et al (2006) S5 environmental disturbances: August’06. https://dcc.ligo.org/DocDB/0038/G060474/000/G060474-00.pdf

  102. Kerr J (2011) Using LIGO and IRIS to monitor seismic noise produced by hydroelectric dams. https://www.i2u2.org/elab/ligo/posters/display.jsp?type=paper&name=hydroelectric_dam_noise.data

  103. Schofield RMS et al (2011) Environmental Disturbances: fans that show up on the GW channel. https://dcc.ligo.org/DocDB/0034/G020396/000/G020396-00.pdf

  104. Fiori I et al (2003) Study of the 1–4 Hz seism

    Google Scholar 

  105. Koley S et al (2017) S-wave velocity model estimation using ambient seismic noise at Virgo. SEG technical program expanded abstracts, pp 2946–2950

    Google Scholar 

  106. Saccorotti G et al (2011) Seismic noise by wind farms: a case study from the Virgo gravitational wave observatory, Italy. Bull Seismol Soc Am 101(2):568

    Article  Google Scholar 

  107. Schofield RMS (2002) Seismic measurements at the stateline wind project – and a prediction of the seismic signal that the proposed maiden wind project would produce at LIGO. https://dcc.ligo.org/T020104/public

  108. Schofield RMS (2019) Predicting seismic noise from wind farms for a current proposal. https://dcc.ligo.org/DocDB/0164/T1900746/004/WindFarmNonProprietaryVersionS.pdf

  109. Fiori I et al (2009) A study of the seismic noise from the wind park near the gravitational wave detector GEO600. https://tds.virgo-gw.eu/?call_file=VIR-0413B-09.pdf

  110. Del Pezzo E et al (1989) Attenuation of volcanic tremor at Mt. Etna, Sicily. Bull Seismol Soc Am 79(6):1989–1994

    Google Scholar 

  111. Taipodia J, Arindam D (2012) A review of active and passive MASW techniques. In: EGCEG 2012, national workshop on engineering geophysics for civil engineering and GeoHazards

    Google Scholar 

  112. Saccorotti G et al (2020) Wave propagation and subsurface velocity structure at the Virgo gravitational wave detector (Italy). In: EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21852

    Google Scholar 

  113. Di Giovanni M et al (2020) A seismological study of the Sos Enattos area-the Sardinia Candidate Site for the Einstein Telescope. Seismol Res Lett 92:352–364

    Article  Google Scholar 

  114. Koley S et al (2018) Seismic noise characterization at a potential site for the Einstein telescope underground gravitational wave detector. In: EAGE 80th annual conference and exhibition, pp 1–5

    Google Scholar 

  115. Schofield RMS (2011) Environmental noise – related lessons from S6. https://dcc.ligo.org/DocDB/0040/G1100330/001/TALK11March.pdf

  116. Goetz E (2005) PlaneMon: airplane detection monitor. https://dcc.ligo.org/LIGO-T050174/public

  117. Nguyen P (2020) Coupling estimates of helicopter flyovers at both sites during O3. https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=56285

  118. Zucker M, Dylla F (2019) LIGO vacuum system design, construction, features and faults. https://dcc.ligo.org/LIGO-G1900137/public

  119. Swinkels B (2009) Cryotrap noise trends. https://logbook.virgo-gw.eu/virgo/?r=23794

  120. Tomaru T et al (2005) Cryocoolers 13, chapter Vibration-free pulse tube cryocooler system for gravitational wave detectors, part I: vibration-reduction method and measurement, pp 695–702. Springer, Boston

    Google Scholar 

  121. Davis D et al (2018) Correlations between O2 blip glitches and low relative humidity. https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=41263

  122. Schofield RMS (2011) Early work to reduce aLIGO environmental coupling. https://dcc.ligo.org/LIGO-G1101046

  123. Van Heijningen JV et al (2019) A multistage vibration isolation system for Advanced Virgo suspended optical benches. Class Quantum Gravity 36:7

    Google Scholar 

  124. Walters S, Dance S (2014) Noise control potential of vacuum isolation panels. In: Institute of acoustics 40th conference, vol 249(8), pp 1–10

    Google Scholar 

  125. Fiori I et al (2013) TCS laser chiller vibration noise, studies and mitigation. https://logbook.virgo-gw.eu/virgo/?r=30983

  126. Schofield RMS (2019) An easy optic damping system reduces remaining optic mount jitter peaks in DARM by more than 3. https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=46494

  127. Frasconi F, Ruggi P (2008) Mechanical damper for the 20 Hz mode of the NE optical bench. https://logbook.virgo-gw.eu/virgo/?r=20540

  128. Calloni E et al (1993) Spatial filtering properties of a mode cleaner. https://tds.virgo-gw.eu/ql/?c=426

  129. Barone F et al (1996) Effects of misalignments and beam jitters in interferometric gravitational wave detectors. Phys Lett A 217(2–3):90–96

    Article  ADS  Google Scholar 

  130. Prijatelj M et al (2012) The output mode cleaner of GEO 600. Class Quantum Gravity 29(5):055009

    Article  MathSciNet  MATH  ADS  Google Scholar 

  131. Smith-Lefebvre N (2012) Techniques for improving the readout sensitivity of gravitational wave antennae. PhD thesis, MIT. Chapters 7 and 9

    Google Scholar 

  132. Swinkels B (2011) Vela bump caused by non-linearity in end-mirror actuators. https://logbook.virgo-gw.eu/virgo/?r=30213

  133. Hild S (2007) Beyond the first generation: extending the science range of the gravitational wave detector GEO600. PhD thesis, University of Hannover. Chapter 3

    Google Scholar 

  134. Accadia T et al (2010) Noise from scattered light in Virgo’s second science run data. Class Quantum Gravity 27(19):194011

    Article  MathSciNet  ADS  Google Scholar 

  135. Schofield RMS et al (2019) August 2019 PEM update and new techniques for localizing scattering. https://dcc.ligo.org/LIGO-G1901683/public

  136. Chiummo A (2020) Stray Light Control system in advanced Virgo. https://tds.virgo-gw.eu/ql/?c=15876

  137. Gouaty R (2020) Scattered light noise mitigation in the Virgo detection system. https://tds.virgo-gw.eu/ql/?c=15880

  138. Duque R, Chiummo A (2017) Theia: a novel 3D Gaussian beam tracer. https://tds.virgo-gw.eu/ql/?c=12626

  139. Canuel B, Genin E (2010) Determination of back scattering and direct reflection recoupling from single optics – application to the End Benches. https://tds.virgo-gw.eu/ql/?c=7570

  140. Canuel B et al (2013) Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors. Opt Express 21: 10546

    Article  ADS  Google Scholar 

  141. Ottaway DJ et al (2012) Impact of upconverted scattered light on advanced interferometric gravitational wave detectors. Opt Express 20(8):8329–8336

    Article  ADS  Google Scholar 

  142. Marque J, Vajente G (2014) Stray light issues. Astrophysics and space science library. Springer International Publishing, pp 275–290

    Google Scholar 

  143. Soni S et al. Reducing scattered light in LIGO’s third observing run. https://arxiv.org/abs/2007.14876

  144. W Ä…s M et al (2020) End benches scattered light modeling and subtraction in Advanced Virgo. https://arxiv.org/abs/2011.03539

  145. Canuel B et al (2009) Diffused light mitigation in Virgo and constraints for Virgo+ and AdV. https://tds.virgo-gw.eu/ql/?c=7118

  146. Hild S et al (2006) Towards gravitational wave astronomy: commissioning and characterization of GEO600. J Phys Conf Ser 32:66–73

    Article  ADS  Google Scholar 

  147. Koley S et al (2017) Scattered light noise investigation at advanced Virgo. https://tds.virgo-gw.eu/ql/?c=12664

  148. Evans M (2020) Optickle. https://dcc.ligo.org/T070260/public

  149. Bertolini A (2019) This morning actions on SNEB and SWEB suspensions. https://logbook.virgo-gw.eu/virgo/?r=47124

  150. Tomaru T et al (2006) Study of optical dumpers used in high vacuum system of interferometric gravitational wave detectors. J Phys Conf Ser 32:476–481

    Article  ADS  Google Scholar 

  151. Wittel H (2015) Active and passive reduction of high order modes in the gravitational wave detector GEO600. PhD thesis, University of Hannover. Chapter 6

    Google Scholar 

  152. W Ä…s M et al (2018) Investigating OMC/LC line cross-coupling. https://logbook.virgo-gw.eu/virgo/?r=40446

  153. Ott HW (1988) Noise reduction techniques in electronic systems. Wiley, Singapore

    Google Scholar 

  154. Morrison R (1986) Grounding and shielding techniques in instrumentation. Wiley, New York

    Google Scholar 

  155. Williams T (2010) Instrumentation reference book, chapter 45 – EMC. Elsevier, Boston, pp 797–871

    Google Scholar 

  156. Nocera F, Paoletti F (2011) Electronics for Advanced Virgo: guidelines and requirements for electronics installation. https://tds.virgo-gw.eu/ql/?c=7061

  157. Schofield R et al (2014) Multi-amp power grid currents in the LLO beam tubes are responsible for Crab Killer glitches and may contribute to beam tube corrosion. https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=16036

  158. Blackburn L et al (2008) The LSC Glitch Group: monitoring noise transients during the fifth LIGO science run. Class Quantum Gravity 25:184004

    Article  ADS  Google Scholar 

  159. Paoletti F et al (2009) Investigated noise of UPS CB machines. https://logbook.virgo-gw.eu/virgo/?r=25397

  160. Paoletti F (2019) Variation of RF EM field in CEB during the O3 run as sensed by the ENV−CEB−RF antenna. https://logbook.virgo-gw.eu/virgo/?r=47430

  161. Dattilo V (2011) Comb at 10.2782 Hz: path and source identification. https://logbook.virgo-gw.eu/virgo/?r=30429

  162. Vajente G (2009) kHz bump investigation. https://logbook.virgo-gw.eu/virgo/?r=25785

  163. Bianchi C, Meloni A (2007) Natural and man-made terrestrial electromagnetic noise: an outlook. Ann Geophys 50(3):435–445

    Google Scholar 

  164. Kowalska-Leszczynska I et al (2017) Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors. Class Quantum Gravity 34:074002

    Article  ADS  Google Scholar 

  165. Akutsu T et al (2018) Construction of KAGRA: an underground gravitational-wave observatory. Prog Theor Exp Phys 2018:1

    Article  Google Scholar 

  166. Thrane E, Christensen N, Schofield RMS (2013) Correlated magnetic noise in global networks of gravitational-wave interferometers: observations and implications. Phys Rev D 87:123009

    Article  ADS  Google Scholar 

  167. Thrane E et al (2014) Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation. Phys Rev D 90:023013

    Article  ADS  Google Scholar 

  168. Cirone A et al (2018) Magnetic coupling to the advanced Virgo payloads and its impact on the low frequency sensitivity. Rev Sci 89:114501

    Article  ADS  Google Scholar 

  169. Amann F et al (2020) Site-selection criteria for the Einstein Telescope. Rev Sci Instrum 91:094504

    Article  ADS  Google Scholar 

  170. Coughlin MW et al (2016) Subtraction of correlated noise in global networks of gravitational-wave interferometers. Class Quantum Gravity 33:224003

    Article  ADS  Google Scholar 

  171. Schofield RMS (2010) Why LIGO’s range is limited by ground motion: the likely source of upconversion. https://dcc.ligo.org/LIGO-G1000923/public

  172. Martynov DV et al (2016) Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D 93:112004

    Article  ADS  Google Scholar 

  173. Aston SM et al (2012) Update on quadruple suspension design for advanced LIGO. Class Quantum Gravity 29(23):235004

    Article  ADS  Google Scholar 

  174. De Rosa R et al (2010) Characterization of electrostatic actuators for suspended mirror control with modulated bias. J Phys Conf Ser 228:012018

    Article  Google Scholar 

  175. Hewitson M et al (2007) Charge measurement and mitigation for the main test masses of the GEO 600 gravitational wave observatory. Class Quantum Gravity 24:6379–6391

    Article  MathSciNet  ADS  Google Scholar 

  176. Weiss R (1972) Electromagnetically coupled broadband gravitational antenna. https://dcc.ligo.org/LIGO-P720002/public/main

  177. Braginsky VB et al (2006) Notes about noise in gravitational wave antennas created by cosmic rays. Phys Lett A 350(1–2):1–4

    Article  MathSciNet  ADS  Google Scholar 

  178. Mitrofanov VP et al (2002) Variation of electric charge on prototype of fused silica test mass of gravitational wave antenna. Phys Lett A 300(4–5):370–374

    Article  MATH  ADS  Google Scholar 

  179. Buchman S et al (2008) Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams. Class Quantum Gravity 25:3

    Article  Google Scholar 

  180. Clay RW et al (1997) Cosmic ray induced noise in gravitational wave detectors. Publ Astron Soc Aust 14(2):195–199

    Article  ADS  Google Scholar 

  181. Abreu P et al (Pierre Auger Collaboration) (2011) The lateral trigger probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger observatory. Astropart Phys 35:266–276

    Google Scholar 

  182. Yamamoto K et al (2008) Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors. Phys Rev D 78:022004

    Article  ADS  Google Scholar 

  183. Harms J (2015) Terrestrial gravity fluctuations. Living Rev Relativ 18:3

    Article  ADS  Google Scholar 

  184. Reitze D, others (2019) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull Am Astron Soc 51:035

    Google Scholar 

  185. Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quantum Gravity 27:194002

    Article  ADS  Google Scholar 

  186. Beccaria M et al (1998) Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity. Class Quantum Gravity 15:3339–3362

    ADS  Google Scholar 

  187. Hall ED et al (2020) Gravitational-wave physics with cosmic explorer: limits to low-frequency sensitivity. https://arxiv.org/abs/2012.03608

  188. Adhikari RX et al (2020) A cryogenic silicon interferometer for gravitational-wave detection. https://arxiv.org/abs/2001.11173

  189. Akutsu T et al (2020) Overview of KAGRA: detector design and construction history. https://arxiv.org/abs/2005.05574

  190. Harms J, Stefan Hild S (2014) Passive Newtonian noise suppression for gravitational-wave observatories based on shaping of the local topography. Class Quantum Gravity 31(18):185011

    Article  MATH  ADS  Google Scholar 

  191. Singha A et al (2020) Newtonian-noise reassessment for the Virgo gravitational-wave observatory including local recess structures. Class Quantum Gravity 37(10):105007

    Article  MathSciNet  ADS  Google Scholar 

  192. Iyer B et al (2011) LIGO-India Technical report https://dcc.ligo.org/LIGO-M1100296/public

  193. Kamai B, LIGO team (2019) Can we cloak LIGO from Seismic Waves? In: APS meeting abstracts, p R11.006

    Google Scholar 

  194. Colombi A et al (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6(1):27717

    Article  ADS  Google Scholar 

  195. Beker MG et al (2011) Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise. Gen Relativ Gravit 43:623–656

    Article  ADS  Google Scholar 

  196. Coughlin MW et al (2016) Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO. Class Quantum Gravity 33(24):244001

    Article  ADS  Google Scholar 

  197. Tringali MC et al (2020) Seismic array measurements at Virgo’s West End Building for the configuration of a Newtonian-noise cancellation system. Class Quantum Gravity 37(2):025005

    Article  ADS  Google Scholar 

  198. Badaracco F, Harms J (2019) Optimization of seismometer arrays for the cancellation of Newtonian noise from seismic body waves. Class Quantum Gravity 36(14):145006

    Article  ADS  Google Scholar 

  199. Coughlin MW et al (2018) Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO. Phys Rev Lett 121(22):221104

    Article  ADS  Google Scholar 

  200. Saulson PR (1984) Terrestrial gravitational noise on a gravitational wave antenna. Phys Rev D 30(4):732–736

    Article  ADS  Google Scholar 

  201. Fiorucci D et al (2018) Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. Phys Rev D 97:062003

    Article  ADS  Google Scholar 

  202. Creighton T (2008) Tumbleweeds and airborne gravitational noise sources for LIGO. Class Quantum Gravity 25(12):125011

    Article  MATH  ADS  Google Scholar 

  203. Harms J (2019) Terrestrial gravity fluctuations. Living Rev Relativ 22:6

    Article  ADS  Google Scholar 

  204. Schofield RMS (2000) Source and propagation of the predominant 1–50 Hz seismic signal from off-site at LIGO-Hanford. https://dcc.ligo.org/DocDB/0033/G000262/000/G000262-00.pdf

  205. Schofield RMS et al (2007) S5 environmental disturbances: to March 07. https://dcc.ligo.org/DocDB/0036/G070133/000/G070133-00.pdf

  206. Schofield RMS (2001) The LIGO E2 investigation of non-stationary noise. https://dcc.ligo.org/DocDB/0033/G010159/000/G010159-00.pdf

  207. Schofield RMS (2009) Mitigation of environmental coupling for eLIGO. https://dcc.ligo.org/DocDB/0001/G0900197/001/TALK09MARCH.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Fiori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fiori, I., Effler, A., Nguyen, P., Paoletti, F., Schofield, R.M.S., Tringali, M.C. (2022). Environmental Noise in Gravitational-Wave Interferometers. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_10

Download citation

Publish with us

Policies and ethics