Skip to main content

Introduction to Gravitational Wave Astronomy

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 1370 Accesses

Abstract

This chapter provides an overview of gravitational wave (GW) astronomy, providing background material that underpins the other, more specialized chapters in this handbook. It starts with a brief historical review of the development of GW astronomy, from Einstein’s prediction of GWs in 1916 to the first direct detection in 2015. It presents the theory of linearized perturbations about Minkowski spacetime of Einstein’s equations and shows how gauge transformations reduce the problem to the standard wave equation with two degrees of freedom or polarizations, h+, h×. We derive the quadrupole formula, which relates the motion of matter in a source region to the far GW field. It is shown that GWs carry energy, as well as linear and angular momentum, away from a source. The GW field of an orbiting circular binary is found; and properties of the evolution of the binary including rate of inspiral and time to coalescence are calculated. A brief review is given of existing and proposed GW detectors and of how to estimate source parameters in LIGO or Virgo data of a GW event. The contributions that GW observations have already made to physics, astrophysics, and cosmology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein A (1916) Naherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Berlin) 1916:688–696

    MATH  Google Scholar 

  2. Einstein A (1918) Über Gravitationswellen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Berlin). 1918:154–167

    MATH  Google Scholar 

  3. Kennefick D (1997) Controversies in the history of the radiation reaction problem in general relativity

    Google Scholar 

  4. Bondi H, van der Burg MGJ, Metzner AWK (1962) Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems. Proc R Soc Lond A269:21–52

    ADS  MathSciNet  MATH  Google Scholar 

  5. Sachs R (1962) Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc Roy Soc Lond A270:103–126

    ADS  MathSciNet  MATH  Google Scholar 

  6. Isaacson R (1968) Gravitational radiation in the limit of high frequency. II. nonlinear terms and the effective stress tensor. Phys Rev 166:1272–1280

    Article  ADS  Google Scholar 

  7. Peters PC, Mathews J (1963) Gravitational radiation from point masses in a Keplerian orbit. Phys Rev 131:435–440

    Article  ADS  MathSciNet  Google Scholar 

  8. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:B1224–B1232

    Article  ADS  Google Scholar 

  9. Weber J (1969) Evidence for discovery of gravitational radiation. Phys Rev Lett 22:1320–1324

    Article  ADS  Google Scholar 

  10. Taylor J, Fowler L, McCulloch P (1979) Measurements of general relativistic effects in the binary pulsar psr1913 + 16. Nature 277:437–440

    Article  ADS  Google Scholar 

  11. Lorentz H, Droste J (1917) The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory. Versl K Akad Wet Amsterdam 26:392649

    Google Scholar 

  12. Lorentz H, Droste J The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory. In: Lorentz H (ed) The collected papers of H.A. Lorentz, 5, pp 330–355. Nijhoff, The Hague (1937)

    Google Scholar 

  13. Arnowitt R, Deser S, Misner CW (2008) Republication of: the dynamics of general relativity. General Relativ Grav 40:1997–2027

    Article  ADS  Google Scholar 

  14. Smarr L (1977) Spacetimes generated by computers: Black holes with gravitational radiation. Ann N Y Acad Sci 302:569–604

    Article  ADS  Google Scholar 

  15. Pretorius F (2005) Evolution of binary black hole spacetimes. Phys Rev Lett 95:121101

    Article  ADS  MathSciNet  Google Scholar 

  16. Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Article  ADS  MathSciNet  Google Scholar 

  17. Alcubierre M (2008) Introduction to 3 + 1 numerical relativity. Oxford University Press, Oxford

    Book  Google Scholar 

  18. Blanchet L (2006) Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev Relativ 9:4

    Article  ADS  Google Scholar 

  19. Baumgarte TW, Shapiro SL (2010) Numerical relativity: solving Einstein’s equations on the computer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Chandrasekhar S (1998) The mathematical theory of black holes. Oxford University Press, New York

    MATH  Google Scholar 

  21. Kokkotas K, Schmidt B (1999) Quasi-normal modes of stars and black holes. Liv Rev Relativ 2:2

    Article  ADS  MathSciNet  Google Scholar 

  22. Damour T, Nagar A The effective one-body description of the two-body problem, pp 211–252. Springer Netherlands, Dordrecht (2011)

    Google Scholar 

  23. Santamaría L et al (2010) Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Phys Rev D 82:064016

    Article  ADS  Google Scholar 

  24. Poisson E, Pound A, Vega I (2011) The motion of point particles in curved spacetime. Liv Rev Relativ 14:1–190

    Article  ADS  Google Scholar 

  25. Bishop NT, Rezzolla L (2016) Extraction of gravitational waves in numerical relativity. Liv Rev Relativ 19:2

    Article  ADS  Google Scholar 

  26. Abbott BP et al (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101

    Article  ADS  Google Scholar 

  27. Abbott BP et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12

    Article  ADS  Google Scholar 

  28. Abbott BP et al (2017) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848:L13

    Article  ADS  Google Scholar 

  29. Schutz BF (1986) Determining the hubble constant from gravitational wave observations. Nature 323:310–311

    Article  ADS  Google Scholar 

  30. Abbott BP et al (2020) GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys J Lett 896:L44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel T. Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bishop, N.T. (2022). Introduction to Gravitational Wave Astronomy. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_1

Download citation

Publish with us

Policies and ethics