Skip to main content

Nucleic Acids in Green Chemistry

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids
  • 65 Accesses

Abstract

Deoxyribonucleic acid (DNA) is one of the most important biopolymers for all living organisms; DNA exhibits characteristic physical properties derived from its double-stranded right-handed helical structure that is thermoreversible, water soluble, and biodegradable and can be processed by chemical methods. Therefore, nucleic acids such as DNA are very promising as environmentally friendly functional polymer materials from the viewpoint of green chemistry and sustainable chemistry. In this review, we discuss the chemistry of environmentally friendly synthesis of nucleic acids, the asymmetric environmental reaction field provided by nucleic acids, the behavior of nucleic acids in ionic liquids, and new materials using DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Benedetti E, Duchemin N, Bethge L, Vonhoff S, Klussmann S, Vasseur J-J, Cossy J, Smietana M, Arseniyadis S (2015) DNA-cellulose: an economical, fully recyclable and highly effective chiral biomaterial for asymmetric catalysis. Chem Commun 51:6076–6079

    Article  CAS  Google Scholar 

  • Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886

    Article  Google Scholar 

  • Boersma AJ, Feringa BL, Roelfes G (2009) Enantioselective Friedel–Crafts reactions in water using a DNA-based catalyst. Angew Chem Int Ed 48:3346–3348

    Article  CAS  Google Scholar 

  • Boersma AJ, Megans RP, Feringa BL, Roelfes G (2010) DNA-based asymmetric catalysis. Chem Soc Rev 39:2083–2092

    Article  CAS  PubMed  Google Scholar 

  • Boersma AJ, de Bruin B, Feringa BL, Roelfes G (2012) Ligand denticity controls enantiomeric preference in DNA-based asymmetric catalysis. Chem Commun 48:2394–2396

    Article  CAS  Google Scholar 

  • Bonora GM, Scremin CL, Colonna FP, Garbesi A (1990) HELP (high efficiency liquid phase) new oligonucleotide synthesis on soluble polymeric support. Nucleic Acids Res 18:3155–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers AN, Trujillo-Rodríguez MJ, Farooq MQ, Anderson JL (2019) Extraction of DNA with magnetic ionic liquids using in situ dispersive liquid–liquid microextraction. Anal Bioanal Chem 411:7375–7385

    Article  CAS  PubMed  Google Scholar 

  • Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 1:22–26

    Article  Google Scholar 

  • Bubalo MC, Vidović S, Redovniković IR, Jokić S (2015) Green solvents for green technologies. J Chem Technol Biotechnol 90:1631–1639

    Article  Google Scholar 

  • Butlerow A (1861) Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann Chem 120:295–298

    Article  Google Scholar 

  • Cardoso L, Micaelo NM (2011) DNA molecular solvation in neat ionic liquids. ChemPhysChem 12:275–277

    Article  CAS  PubMed  Google Scholar 

  • Chandran A, Ghoshdastidar D, Senapati S (2012) Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids? J Am Chem Soc 134:20330–20339

    Article  CAS  PubMed  Google Scholar 

  • Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, Anderson JL (2015a) Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem 87:1552–1559

    Article  CAS  PubMed  Google Scholar 

  • Clark KD, Yamsek MM, Nacham O, Anderson JL (2015b) Magnetic ionic liquids as PCR-compatible solvents for DNA extraction from biological samples. Chem Commun 51:16771–16773

    Article  CAS  Google Scholar 

  • Clark KD, Varona M, Anderson JL (2017) Ion-tagged oligonucleotides coupled with a magnetic liquid support for the sequence-specific capture of DNA. Angew Chem Int Ed 56:7630–7633

    Article  CAS  Google Scholar 

  • Coquière D, Feringa BL, Roelfes G (2007) DNA-based catalytic enantioselective Michael reactions in water. Angew Chem Int Ed 46:9308–9311

    Article  Google Scholar 

  • Ding X, Clark KD, Varona M, Emaus MN, Anderson JL (2019) Magnetic ionic liquid-enhanced isothermal nucleic acid amplification and its application to rapid visual DNA analysis. Anal Chim Acta 1045:132–140

    Article  CAS  PubMed  Google Scholar 

  • Donga RA, Khaliq-Uz-Zaman SM, Chan TH, Damha MJ (2006) A novel approach to oligonucleotide synthesis using an Imidazolium ion tag as a soluble support. J Org Chem 71:7907–7910

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Ohno H (2012) Stable G-quadruplex structure in a hydrated ion pair: cholinium cation and dihydrogen phosphate anion. Chem Commun 48:5751–5753

    Article  CAS  Google Scholar 

  • Gállego I, Grover MA, Hud NV (2015) Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. Angew Chem Int Ed 54:6765–6769

    Article  Google Scholar 

  • Gomez EF, Steckl AJ (2018) Engineering DNA and nucleobases for present and future device applications. In: Glowacki ED, Sariciftci NS, Bauer S (eds) Irimia-Vladu M. Green Materials for Electronics, Wiley, pp 191–233

    Google Scholar 

  • Guo X, Tang L, Yang Y, Zha Z, Wang Z (2014) An efficient synthesis of amides from alcohols and azides catalyzed by a bifunctional catalyst au/DNA under mild conditions. Green Chem 16:2443–2447

    Article  CAS  Google Scholar 

  • Han J, Cui Y, Han X, Liang C, Liu W, Luo D, Yang D (2020) Super-soft DNA/dopamine-grafted-dextran hydrogel as dynamic wire for electric circuits switched by a microbial metabolism process. Adv Sci 7:000684

    Article  Google Scholar 

  • Han J, Guo Y, Wang H, Zhang K, Yang D (2021a) Sustainable bioplastic made from biomass DNA and ionomers. J Am Chem Soc 143:19486–19497

    Article  CAS  PubMed  Google Scholar 

  • Han J, Cui Y, Gu Z, Yang D (2021b) Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials 273:120846

    Article  CAS  PubMed  Google Scholar 

  • Harsch G, Bauer H, Voelter W (1984) Kinetik, Katalyse und Mechanismus der Sekundärreaktion in der Schlußphase der Formose-Reaktion. Liebigs Ann Chem 4:623–635

    Article  Google Scholar 

  • Li T, Joshi MD, Ronning DR, Anderson JL (2013) Ionic liquids as solvents for in situ dispersive liquid-liquid microextraction of DNA. J Chromatogr A 1272:8–14

    Article  CAS  PubMed  Google Scholar 

  • Li N, Wang Y, Xu K, Wen Q, Ding X, Zhang H, Yang Q (2016) High-performance of deep eutectic solvent based aqueous bi-phasic systems for the extraction of DNA. RSC Adv 6:84406–84414

    Article  CAS  Google Scholar 

  • Mamajanov I, Engelhart AE, Bean HD, Hud NV (2010) DNA and RNA in anhydrous media: duplex, triplex, and G-quadruplex secondary structures in a deep eutectic solvent. Angew Chem Int Ed Engl 49:6310–6314

    Article  CAS  PubMed  Google Scholar 

  • Marusic M, Tateishi-Karimata H, Sugimoto N, Plavec J (2015) Structural foundation for DNA behavior in hydrated ionic liquid: an NMR study. Biochimie 108:169–177

    Article  CAS  PubMed  Google Scholar 

  • Mondal D, Sharma M, Mukesh C, Gupta V, Prasad K (2013) Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability. Chem Commun 49:9606–9608

    Article  CAS  Google Scholar 

  • Mukesh C, Mondal D, Sharma M, Prasad K (2013) Rapid dissolution of DNA in a novel bio-based ionic liquid with long-term structural and chemical stability: successful recycling of the ionic liquid for reuse in the process. Chem Commun 49:6849–6851

    Article  CAS  Google Scholar 

  • Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N (2014a) Choline ion interactions with DNA atoms explain unique stabilization of A-T base pairs in DNA duplexes: a microscopic view. J Phys Chem B 118:379–389

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N (2014b) Affinity of molecular ions for DNA structures is determined by solvent accessible surface area. J Phys Chem B 118:9583–9594

    Article  CAS  PubMed  Google Scholar 

  • Oelerich J, Roelfes G (2013) DNA-based asymmetric organometallic catalysis in water. Chem Sci 4:2013–2017

    Article  CAS  Google Scholar 

  • Park S, Ikehata K, Watabe R, Hidaka Y, Rajendran A, Sugiyama H (2012) Deciphering DNA-based asymmetric catalysis through intramolecular Friedel-crafts alkylations. Chem Commun 48:10398–10400

    Article  CAS  Google Scholar 

  • Park S, Zheng L, Kumakiri S, Sakashita S, Otomo H, Ikehata K, Sugiyama H (2014) Development of DNA-based hybrid catalysts through direct ligand incorporation: toward understanding of DNA-based asymmetric catalysis. ACS Catal 4:4070–4073

    Article  CAS  Google Scholar 

  • Pawlicka A, Sentanin F, Firmino A, Grote JG, Kajzar F, Rau I (2011) Ionically conducting DNA-based membranes for eletrochromic devices. Synth Met 161:2329–2334

    Article  CAS  Google Scholar 

  • Petrova GP, Ke Z, Park S, Sugiyama H, Morokuma K (2014) The origin of enantioselectivity for intramolecular Friedel-crafts reaction catalyzed by supramolecular cu/DNA catalyst complex. Chem Phys Lett 600:87–95

    Article  CAS  Google Scholar 

  • Portella G, Germann MW, Hud NV, Orozco M (2014) MD and NMR analyses of choline and TMA binding to duplex DNA: on the origins of aberrant sequence-dependent stability by alkyl cations in aqueous and water-free solvents. J Am Chem Soc 136:3075–3086

    Article  CAS  PubMed  Google Scholar 

  • Radko A, NizioÅ‚ J, MakyÅ‚a-Juzak K, Ekiert R, Górska N, Górecki A, Marzec M (2021) Properties of DNA-CTMA monolayers obtained by Langmuir-Blodgett technique. Mater Sci Eng B 263:114859

    Article  CAS  Google Scholar 

  • Rau I, Grote JG, Kajzar F, Pawlicka A (2012) DNA-novel nanomaterial for applications in photonics and in electronics. Comptes Rendus Physique 13:853–864

    Article  CAS  Google Scholar 

  • Reddeppa M, Mitta SB, Park B-G, Kim S-G, Park SH, Kim M-D (2019) DNA-CTMA functionalized GaN surfaces for NO2 gas sensor at room temperature under UV illumination. Org Electron 65:334–340

    Article  CAS  Google Scholar 

  • Roe S, Ritson DJ, Garner T, Searle M, Moses JE (2010) Tuneable DNA-based asymmetric catalysis using a G-quadruplex supramolecular assembly. Chem Commun 46:4309–4311

    Article  CAS  Google Scholar 

  • Roelfes G, Feringa BL (2005) DNA-based asymmetric catalysis. Angew Chem Int Ed 44:3230–3232

    Article  CAS  Google Scholar 

  • Sarkar S, Rajdev P, Singh PC (2020) Hydrogen bonding of ionic liquids in the groove region of DNA controls the extent of its stabilization: synthesis, spectroscopic and simulation studies. Phys Chem Chem Phys 22:15582–15591

    Article  CAS  PubMed  Google Scholar 

  • Seelig G, Yurke B, Winfree E (2006) Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc 128:12211–12220

    Article  CAS  PubMed  Google Scholar 

  • Sequeira RA, Bhatt J, Prasad K (2020) Recent trends in processing of proteins and DNA in alternative solvents: a sustainable approach. Sustain Chem 1:116–137

    Article  Google Scholar 

  • Shi Y, Liu Y-L, Lai P-Y, Tseng M-C, Tseng M-J, Li Y, Chu Y-H (2012) Ionic liquids promote PCR amplification of DNA. Chem Commun 48:5325–5327

    Article  CAS  Google Scholar 

  • Shibata N, Yasui H, Nakamura S, Toru T (2007) DNA-mediated enantioselective carbon-fluorine bond formation. Syn Lett 18:1153–1157

    Google Scholar 

  • Shukla SK, Mikkola J-P (2020) Use of ionic liquids in protein and DNA chemistry. Front Chem 8:598662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Sharma M, Mondal D, Pereira MM, Prasad K (2017) Very high concentration solubility and long-term stability of DNA in an ammonium-based ionic liquid: a suitable medium for nucleic acid packaging and preservation. ACS Sustain Chem Eng 5:1998–2005

    Article  CAS  Google Scholar 

  • Soni SK, Sarkar S, Mirzadeh N, Selvakannan PR, Bhargava SK (2015) Self-assembled functional nanostructure of plasmid DNA with ionic liquid [Bmim][PF6]: enhanced efficiency in bacterial gene transformation. Langmuir 31:4722–4732

    Article  CAS  PubMed  Google Scholar 

  • Stadler P, Oppelt K, Singh TB, Grote JG, Schwodiauer R, Bauer S, Piglmayer-Brezina H, Bauerle D, Sariciftci NS (2007) Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric. Org Electron 8:648–654

    Article  CAS  Google Scholar 

  • Suzuki T, Kawabe Y (2014) Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method. Opt Mater Express 4:1411–1419

    Article  CAS  Google Scholar 

  • Tanaka K, Okahata Y (1996) A DNA-lipid complex in organic media and formation of an aligned cast film. J Am Chem Soc 118:10679–10683

    Article  CAS  Google Scholar 

  • Tang J, Yao C, Gu Z, Jung S, Luo D, Yang D (2020) Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew Chem Int Ed 59:2490–2495

    Article  CAS  Google Scholar 

  • Tateishi-Karimata H, Sugimoto N (2012) A-T base pairs are more stable than G-C base pairs in a hydrated ionic liquid. Angew Chem Int Ed 51:1416–1419

    Article  CAS  Google Scholar 

  • Tateishi-Karimata H, Nakano M, Sugimoto N (2014) Comparable stability of Hoogsteen and Watson-crick base pairs in ionic liquid choline dihydrogen phosphate. Sci Rep 4:3593

    Article  PubMed  PubMed Central  Google Scholar 

  • Tateishi-Karimata H, Nakano M, Pramanik S, Tanaka S, Sugimoto N (2015) I-motifs are more stable than G-quadruplexes in a hydrated ionic liquid. Chem Commun 51:6909–6912

    Article  CAS  Google Scholar 

  • Turberfield AJ, Mitchell JC, Yurke B, Mills Jr AP, Blakey MI, Simmel FC (2003) DNA fuel for free-running Nanomachines. Phys Rev Lett 90:118102-1–118102-4

    Article  Google Scholar 

  • Usami K, Okamoto A (2017) Hydroxyapatite: catalyst for a one-pot pentose formation. Org Biomol Chem 15:8888–8893

    Article  CAS  PubMed  Google Scholar 

  • Usami K, Xiao K, Okamoto A (2019) Efficient ketose production by a hydroxyapatite catalyst in a continuous flow module. ACS Sustain Chem Eng 7:3372–3377

    Article  CAS  Google Scholar 

  • Van Dyk JS, Gama R, Morrison D, Swart S, Pletschke BI (2013) Food processing waste: problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew Sust Energ Rev 26:521–531

    Article  Google Scholar 

  • Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane DR (2010) Long-term structural and chemical stability of DNA in hydrated ionic liquids. Angew Chem Int Ed 49:1631–1633

    Article  CAS  Google Scholar 

  • Wada T, Sugahara N, Kawano M, Inoue Y (2000) First asymmetric photochemistry with nucleosides and DNA: enantiodifferentiating Z–E photoisomerization of cyclooctene. Chem Lett 29:1174–1175

    Article  Google Scholar 

  • Wang J-H, Cheng D-H, Chen X-W, Du Z, Fang Z-L (2007) Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal Chem 79:620–625

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ouyang G, Zhang J, Wang Z (2010) A DNA-templated catalyst: the preparation of metal-DNA nanohybrids and their application in organic reactions. Chem Commun 46:7912–7914

    Article  CAS  Google Scholar 

  • Wang Y, Zhu D, Tang L, Wang S, Wang Z (2011) Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew Chem Int Ed 50:8917–8921

    Article  CAS  Google Scholar 

  • Wang C, Jia G, Zhou J, Li Y, Liu Y, Lu S, Li C (2012) Enantioselective Diels-Alder reactions with G-quadruplex DNA-based catalysts. Angew Chem Int Ed 51:9352–9355

    Article  CAS  Google Scholar 

  • Wang Q, Zhong H, Jiang M, Liao Q, Yang J, Zhou X, Tang J (2018) Recycling antibiotic bacterial residues for application in high-performance lithium-Sulfur batteries. ChemElectroChem 5:2235–2241

    Article  CAS  Google Scholar 

  • Wang D, Cui J, Gan M, Xue Z, Wang J, Liu P, Hu Y, Pardo Y, Hamada S, Yang D, Luo D (2020) Transformation of biomass DNA into biodegradable materials from gels to plastics for reducing petrochemical consumption. J Am Chem Soc 142:10114–10124

    Article  CAS  PubMed  Google Scholar 

  • Xuan S, Meng Z, Wu X, Wong J-R, Devi G, EKL Y, Shao F (2016) Effcient DNA-mediated electron transport in ionic liquids. ACS Sustain Chem Eng 4:6703–6711

    Article  CAS  Google Scholar 

  • Yurke B, Turberfield AJ, Mills Jr AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  CAS  PubMed  Google Scholar 

  • Zhu D-M, Evans RK (2006) Molecular mechanism and thermodynamics study of plasmid DNA and cationic surfactants interactions. Langmuir 22:3735–3743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimitsu Okamoto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Okamoto, A. (2022). Nucleic Acids in Green Chemistry. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics