Skip to main content

Targeting DNA Junctions with Small Molecules for Therapeutic Applications in Oncology

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids
  • 56 Accesses

Abstract

DNA junctions exist at the branch point of three or four DNA duplexes (dsDNA or B DNA) in hairpin and cruciform structures. These structures occur when repeated dsDNA sequences open up to expose single-stranded DNA (ssDNA), which then folds upon itself to form an intramolecular hairpin. Junctions are thus formed during DNA transactions, i.e., when the dsDNA is being replicated, transcribed, or repaired. Three-way junctions (TWJs) and four-way junctions (FWJs) can encapsulate small molecules, termed ligands, which stabilize the non-B DNA structural motif. In vitro assays employ this stabilization effect to identify junction-binding small molecules. TWJ-binding molecules have C3 symmetry, are approximately 10 Å in diameter, and contain aromatic and positively charged chemical groups; FWJ-binding ligands are often larger with similar chemical motifs and C2 symmetry. We describe here the discovery of junction-binding molecules, culminating in those which show exceptional in vitro binding and promising in cellulo properties. Ligands able to stabilize DNA junctions in cells hinder DNA transactions and thus induce a DNA damage response (DDR), leading to cytotoxicity. This approach is cancer-selective as cancer cells are particularly sensitive to DNA damage due to their impaired DDR mechanisms. Recently, these ligands were incorporated in synthetic lethality strategies, demonstrating the enormous progress that the field of junction targeting has made in only 30 years, which should inspire chemical biologists in the pursuit of more specific ligands and techniques to characterize their molecular mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amrane S, De Cian A, Rosu F, Kaiser M, De Pauw E, Teulade-Fichou M-P, Mergny J-L (2008) Identification of trinucleotide repeat ligands with a FRET melting assay. Chembiochem 9:1229–1234

    Article  CAS  Google Scholar 

  • Barros SA, Chenoweth DM (2014) Recognition of nucleic acid junctions using Triptycene-based molecules. Angew Chem Int Ed 53:13746–13750

    Article  CAS  Google Scholar 

  • Barros SA, Chenoweth DM (2015) Triptycene-based small molecules modulate (CAG)·(CTG) repeat junctions. Chem Sci 6:4752–4755

    Article  CAS  Google Scholar 

  • Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678

    Article  CAS  Google Scholar 

  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) γH2AX and cancer. Nat Rev Cancer 8:957

    Article  CAS  Google Scholar 

  • Bossaert M, Pipier A, Riou J-F, Noirot C, Nguyên L-T, Serre R-F, Bouchez O, Defrancq E, Calsou P, Britton S, Gomez D (2021) Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. elife 10:e65184

    Article  CAS  Google Scholar 

  • Brabec V, Howson SE, Kaner RA, Lord RM, Malina J, Phillips RM, Abdallah QMA, McGowan PC, Rodger A, Scott P (2013) Metallohelices with activity against cisplatin-resistant cancer cells; does the mechanism involve DNA binding? Chem Sci 4:4407–4416

    Article  CAS  Google Scholar 

  • Brogden AL, Hopcroft NH, Searcey M, Cardin CJ (2007) Ligand bridging of the DNA Holliday junction: molecular recognition of a stacked-X four-way junction by a small molecule. Angew Chem Int Ed 46:3850–3854

    Article  CAS  Google Scholar 

  • Cañeque T, Müller S, Rodriguez R (2018) Visualizing biologically active small molecules in cells using click chemistry. Nat Rev Chem 2:202–215

    Article  Google Scholar 

  • Cardo L, Sadovnikova V, Phongtongpasuk S, Hodges NJ, Hannon MJ (2011) Arginine conjugates of metallo-supramolecular cylinders prescribe helicity and enhance DNA junction binding and cellular activity. Chem Commun 47:6575–6577

    Article  CAS  Google Scholar 

  • Cerasino L, Hannon MJ, Sletten E (2007) DNA three-way junction with a dinuclear iron (II) supramolecular helicate at the center: a NMR structural study. Inorg Chem 46:6245–6251

    Article  Google Scholar 

  • Chodosh LA, Fire A, Samuels M, Sharp PA (1989) 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J Biol Chem 264:2250–2257

    Article  CAS  Google Scholar 

  • Chou T-C (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  Google Scholar 

  • del Mundo IM, Vasquez KM, Wang G (2019) Modulation of DNA structure formation using small molecules. Biochim Biophys Acta - Mol Cell Res:118539

    Google Scholar 

  • Dey M, Patra S, Su LY, Segall AM (2013) Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair. PLoS One 8:e78751

    Article  Google Scholar 

  • Dietrich B, Lehn J-M, Guilhem J, Pascard C (1989) Anion receptor molecules : synthesis of an octaaza-cryptand and structure of its fluoride cryptate. Tetrahedron Lett 30:4125–4128

    Article  CAS  Google Scholar 

  • Ducani C, Leczkowska A, Hodges NJ, Hannon MJ (2010) Noncovalent DNA-binding Metallo-supramolecular cylinders prevent DNA transactions in vitro. Angew Chem Int Ed 49:8942–8945

    Article  CAS  Google Scholar 

  • Duskova K, Lamarche J, Amor S, Caron C, Queyriaux N, Gaschard M, Penouilh M-J, de Robillard G, Delmas D, Devillers CH, Granzhan A, Teulade-Fichou M-P, Chavarot-Kerlidou M, Therrien B, Britton S, Monchaud D (2019) Identification of three-way DNA junction ligands through screening of chemical libraries and validation by complementary in vitro assays. J Med Chem 62:4456–4466

    Article  CAS  Google Scholar 

  • Duskova K, Lejault P, Benchimol É, Guillot R, Britton S, Granzhan A, Monchaud D (2020) DNA junction ligands trigger DNA damage and are synthetic lethal with DNA repair inhibitors in cancer cells. J Am Chem Soc 142:424–435

    Article  CAS  Google Scholar 

  • Eichman BF, Vargason JM, Mooers BH, Ho PS (2000) The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc Natl Acad Sci U S A 97:3971–3976

    Article  CAS  Google Scholar 

  • Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKenna W, Muschel RJ, Brunner TB (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441–e441

    Article  CAS  Google Scholar 

  • Gamba I, Rama G, Ortega-Carrasco E, Maréchal J-D, Martínez-Costas J, Vázquez ME, López MV (2014) Programmed stereoselective assembly of DNA-binding helical metallopeptides. Chem Commun 50:11097–11100

    Article  CAS  Google Scholar 

  • Georgakopoulos-Soares I, Morganella S, Jain N, Hemberg M, Nik-Zainal S (2018) Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res 28:1264–1271

    Article  CAS  Google Scholar 

  • Ghosh K, Lau CK, Guo F, Segall AM, Van Duyne GD (2005) Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination. J Biol Chem 280:8290–8299

    Google Scholar 

  • Gómez-González J, Pérez Y, Sciortino G, Roldan-Martín L, Martínez-Costas J, Maréchal J-D, Alfonso I, Vázquez López M, Vázquez ME (2021) Dynamic Stereoselection of peptide Helicates and their selective Labeling of DNA replication foci in cells. Angew Chem Int Ed 60:8859–8866

    Article  Google Scholar 

  • Gopaul DN, Guo F, Van Duyne GD (1998) Structure of the Holliday junction intermediate in Cre–loxP site-specific recombination. EMBO J 17:4175–4187

    Article  CAS  Google Scholar 

  • Gunderson CW, Segall AM (2006) DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol Microbiol 59:1129–1148

    Article  CAS  Google Scholar 

  • Guyon L, Pirrotta M, Duskova K, Granzhan A, Teulade-Fichou M-P, Monchaud D (2018) TWJ-screen: an isothermal screening assay to assess ligand/DNA junction interactions in vitro. Nucleic Acids Res 46:e16

    Article  Google Scholar 

  • Haider S, Li P, Khiali S, Munnur D, Ramanathan A, Parkinson GN (2018) Holliday junctions formed from human Telomeric DNA. J Am Chem Soc 140:15366–15374

    Article  CAS  Google Scholar 

  • Hänsel-Hertsch R, Di Antonio M, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284

    Article  Google Scholar 

  • Hansen MH, Blakskjær P, Petersen LK, Hansen TH, Højfeldt JW, Gothelf KV, Hansen NJV (2009) A yoctoliter-scale DNA reactor for small-molecule evolution. J Am Chem Soc 131:1322–1327

    Article  CAS  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159

    Article  CAS  Google Scholar 

  • Hotze AC, Hodges NJ, Hayden RE, Sanchez-Cano C, Paines C, Male N, Tse M-K, Bunce CM, Chipman JK, Hannon MJ (2008) Supramolecular iron cylinder with unprecedented DNA binding is a potent cytostatic and apoptotic agent without exhibiting genotoxicity. Chem Biol 15:1258–1267

    Article  CAS  Google Scholar 

  • Howell LA, Waller ZAE, Bowater R, O'Connell M, Searcey M (2011) A small molecule that induces assembly of a four way DNA junction at low temperature. Chem Commun 47:8262–8264

    Article  CAS  Google Scholar 

  • Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV (2011) Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol 6:628–635

    Article  CAS  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  Google Scholar 

  • Kato T, Sato N, Hayama S, Yamabuki T, Ito T, Miyamoto M, Kondo S, Nakamura Y, Daigo Y (2007) Activation of Holliday Junction–Recognizing Protein Involved in the Chromosomal Stability and Immortality of Cancer Cells. Cancer Res 67:8544–8553

    Article  CAS  Google Scholar 

  • Kaushal S, Freudenreich CH (2019) The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosom Cancer 58:270–283

    Article  CAS  Google Scholar 

  • Kawatani M, Takayama H, Muroi M, Kimura S, Maekawa T, Osada H (2011) Identification of a small-molecule inhibitor of DNA topoisomerase II by proteomic profiling. Chem Biol 18:743–751

    Article  CAS  Google Scholar 

  • Kepple KV, Boldt JL, Segall AM (2005) Holliday junction-binding peptides inhibit distinct junction-processing enzymes. Proc Natl Acad Sci U S A 102:6867–6872

    Article  CAS  Google Scholar 

  • Kepple KV, Patel N, Salamon P, Segall AM (2008) Interactions between branched DNAs and peptide inhibitors of DNA repair. Nucleic Acids Res 36:5319

    Article  CAS  Google Scholar 

  • Khristich AN, Mirkin SM (2020) On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J Biol Chem 295:4134–4170

    Article  CAS  Google Scholar 

  • Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu W, Okuda H, Koizumi A (2011) Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 89:121–130

    Article  CAS  Google Scholar 

  • Leahy JJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L, Smith GC (2004) Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg Med Chem Lett 14:6083–6087

    Article  CAS  Google Scholar 

  • Lilley DM (2000) Structures of helical junctions in nucleic acids. Q Rev Biophys 33:109–159

    Article  CAS  Google Scholar 

  • Liu Y, West SC (2004) Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5:937–944

    Article  CAS  Google Scholar 

  • Lu M, Guo Q, Kallenbach NR (1992) Interaction of drugs with branched DNA structures. Crit Rev Biochem Mol Biol 27:157–190

    Article  CAS  Google Scholar 

  • Malina J, Hannon MJ, Brabec V (2007) Recognition of DNA three-way junctions by Metallosupramolecular cylinders: gel electrophoresis studies. Chem Eur J 13:3871–3877

    Article  CAS  Google Scholar 

  • McLuckie KIE, Di Antonio M, Zecchini H, Xian J, Caldas C, Krippendorff BF, Tannahill D, Lowe C, Balasubramanian S (2013) G-Quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J Am Chem Soc 135:9640–9643

    Article  CAS  Google Scholar 

  • Moldovan G-L, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  CAS  Google Scholar 

  • Novotna J, Laguerre A, Granzhan A, Pirrotta M, Teulade-Fichou M-P, Monchaud D (2015) Cationic azacryptands as selective three-way DNA junction binding agents. Org Biomol Chem 13:215–222

    Article  CAS  Google Scholar 

  • Oleksi A, Blanco AG, Boer R, Usón I, Aymamí J, Rodger A, Hannon MJ, Coll M (2006) Molecular recognition of a three-way DNA junction by a Metallosupramolecular Helicate. Angew Chem Int Ed 45:1227–1231

    Article  CAS  Google Scholar 

  • Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289:466–470

    Article  CAS  Google Scholar 

  • Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18

    Article  CAS  Google Scholar 

  • Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ, Laiho M (2014) A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 25:77–90

    Article  CAS  Google Scholar 

  • Pilié PG, Tang C, Mills GB, Yap TA (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 16:81–104

    Article  Google Scholar 

  • Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, Van Swieten JC, Myllykangas L (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  Google Scholar 

  • Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, Oelschlaegel T, Xhemalce B, Balasubramanian S, Jackson SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8:301–310

    Article  CAS  Google Scholar 

  • Roncancio D, Yu H, Xu X, Wu S, Liu R, Debord J, Lou X, Xiao Y (2014) A label-free Aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids. Anal Chem 86:11100–11106

    Article  CAS  Google Scholar 

  • Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679

    Article  CAS  Google Scholar 

  • Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548

    Article  CAS  Google Scholar 

  • Stojanović MN, Green EG, Semova S, Nikić DB, Landry DW (2003) Cross-reactive arrays based on three-way junctions. J Am Chem Soc 125:6085–6089

    Article  Google Scholar 

  • Thiviyanathan V, Luxon BA, Leontis NB, Illangasekare N, Donne DG, Gorenstein DG (1999) Hybrid-hybrid matrix structural refinement of a DNA three-way junction from 3D NOESY-NOESY. J Biomol NMR 14:209–221

    Article  CAS  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    Article  CAS  Google Scholar 

  • van Buuren BN, Overmars FJ, Ippel JH, Altona C, Wijmenga SS (2000) Solution structure of a DNA three-way junction containing two unpaired thymidine bases. Identification of sequence features that decide conformer selection. J Mol Biol 304:371–383

    Article  Google Scholar 

  • Van Riesen AJ, Le J, Slavkovic S, Churcher ZR, Shoara AA, Johnson PE, Manderville RA (2021) Visible Fluorescent Light-up Probe for DNA Three-Way Junctions Provides Host–Guest Biosensing Applications. ACS Appl Bio Mater 4:6732–6741

    Article  Google Scholar 

  • Vologodskii A, Lukashin A, Anshelevich V, Frank-Kamenetskii M (1979) Fluctuations in superhelical DNA. Nucleic Acids Res 6:967–982

    Article  CAS  Google Scholar 

  • Vuong S, Stefan L, Lejault P, Rousselin Y, Denat F, Monchaud D (2012) Identifying three-way DNA junction-specific small-molecules. Biochimie 94:442–450

    Article  CAS  Google Scholar 

  • Walker FO (2007) Huntington's disease. Lancet 369:218–228

    Article  CAS  Google Scholar 

  • Wang G, Vasquez KM (2006) Non-B DNA structure-induced genetic instability. Mutat Res 598:103–119

    Article  CAS  Google Scholar 

  • Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103:4659–4665

    Article  CAS  Google Scholar 

  • Wu B, Girard F, Van Buuren B, Schleucher J, Tessari M, Wijmenga S (2004) Global structure of a DNA three-way junction by solution NMR: towards prediction of 3H fold. Nucleic Acids Res 32:3228–3239

    Article  CAS  Google Scholar 

  • Yin Q, Liu X, Hu L, Song Q, Liu S, Huang Q, Geng Z, Zhu Y, Li X, Fu F, Wang H (2021) VE-822, a novel DNA Holliday junction stabilizer, inhibits homologous recombination repair and triggers DNA damage response in osteogenic sarcomas. Biochem Pharmacol 193:114767

    Article  CAS  Google Scholar 

  • Zell J, Rota Sperti F, Britton S, Monchaud D (2021a) DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2:47–76

    Article  CAS  Google Scholar 

  • Zell J, Duskova K, Chouh L, Bossaert M, Chéron N, Granzhan A, Britton S, Monchaud D (2021b) Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Res 49:10275–10288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Monchaud .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zell, J., Monchaud, D. (2022). Targeting DNA Junctions with Small Molecules for Therapeutic Applications in Oncology. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics