Abstract
Nucleic acids collectively play primordial functions, some of which are still barely understood, in all living organisms. DNA and RNA oligonucleotides have also advanced as pivotal tools in numerous applications such as therapeutic technologies, diagnostics, or material sciences. Chemical modifications, particularly at the level of the nucleobases, are ubiquitous. Indeed, base modifications in natural DNA and RNA are nearly as important as the primary sequences and are involved in numerous biological roles and functions, mainly via epigenetic regulation mechanisms. In synthetic nucleic acids, chemical modifications provide oligonucleotides with improved binding or catalytic activities as well as exogenous reactivities, all of which are largely nonaccessible to canonical DNA or RNA. Nucleobase modifications can be incorporated into oligonucleotides either by standard solid-phase synthesis or by application of a chemoenzymatic method. In this chapter, we will describe how the combination of polymerases and nucleoside triphosphate analogs can be harnessed to synthesize oligonucleotides containing nucleobase modifications. We will highlight the potency of this approach through the description of relevant examples including synthesis of oligonucleotides containing naturally occurring modifications and the selection of functional nucleic acids with improved properties. In the last section of this chapter, more recent applications of this method will be discussed with an emphasis on mRNA-based vaccines and on controlled enzymatic synthesis.
Similar content being viewed by others
References
Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T (2015) N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 217:337–344
Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S, Vaisman A et al (2019) A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat Chem 11(6):533–542
Baladi T, Nilsson JR, Gallud A, Celauro E, Gasse C, Levi-Acobas F et al (2021) Stealth fluorescence labeling for live microscopy imaging of mRNA delivery. J Am Chem Soc 143(14):5413–5424
Bartee D, Nance KD, Meier JL (2022) Site-specific synthesis of N4-acetylcytidine in RNA reveals physiological duplex stabilization. J Am Chem Soc 144(8):3487–3496
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59
Borggräfe J, Victor J, Rosenbach H, Viegas A, Gertzen CGW, Wuebben C et al (2022) Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature 601(7891):144–149
Bornewasser L, Domnick C, Kath-Schorr S (2022) Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 13(17):4753–4761
Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6(8):593–595
Cahová H, Panattoni A, Kielkowski P, Fanfrlík J, Hocek M (2016) 5-substituted pyrimidine and 7-substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem Biol 11(11):3165–3171
Chakrapani A, Ruiz-Larrabeiti O, Pohl R, Svoboda M, Krásný L, Hocek M (2022) Glucosylated 5-hydroxymethylpyrimidines as epigenetic DNA bases regulating transcription and restriction cleavage. Chem Eur J 28(31):e202200911
Cheung Y-W, Röthlisberger P, Mechaly AE, Weber P, Levi-Acobas F, Lo Y et al (2020) Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc Natl Acad Sci USA 117(29):16790–16798
Choi J-S, Dasari A, Hu P, Benkovic SJ, Berdis AJ (2015) The use of modified and non-natural nucleotides provide unique insights into pro-mutagenic replication catalyzed by polymerase eta. Nucleic Acids Res 44(3):1022–1035
Choi J, Indrisiunaite G, DeMirci H, Ieong K-W, Wang J, Petrov A et al (2018) 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat Struct Mol Biol 25(3):208–216
Eisen TJ, Eichhorn SW, Subtelny AO, Lin KS, McGeary SE, Gupta S et al (2020) The dynamics of cytoplasmic mRNA metabolism. Mol Cell 77(4):786–799.e710
Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822
Engel JD, von Hippel PH (1978) Effects of methylation on the stability of nucleic acid conformations. Studies at the polymer level. J Biol Chem 253(3):927–934
Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L et al (2020) Enzymatic formation of an artificial base pair using a modified purine nucleoside triphosphate. ACS Chem Biol 15(11):2872–2884
Flamme M, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M (2022) Evaluation of 3′-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides. Commun Chem 5:68
Flores-Juárez CR, González-Jasso E, Antaramian A, Pless RC (2013) Capacity of N4-methyl-2′-deoxycytidine 5′-triphosphate to sustain the polymerase chain reaction using various thermostable DNA polymerases. Anal Biochem 438(1):73–81
Futami K, Kimoto M, Lim YWS, Hirao I (2019) Genetic alphabet expansion provides versatile specificities and activities of unnatural-base DNA aptamers targeting cancer cells. Mol Ther Nucleic Acids 14:158–170
Gabbai A, Marcus I, Falbriard JG, Posternak H (1971) Dérivés de nucléotides d’intérêt biologique VIII. Synthèse de quelques analogues de l’acide adénosine-triphosphorique (ATP). Helv Chim Acta 54(7):2133–2141
Gawande BN, Rohloff JC, Carter JD, von Carlowitz I, Zhang C, Schneider DJ et al (2017) Selection of DNA aptamers with two modified bases. Proc Natl Acad Sci USA 114(11):2898–2903
Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5(12):e15004
Hendler SS, Fuerer E, Srinivasan PR (1970) Synthesis and chemical properties of monomers and polymers containing 7-methylguanine and an investigation of their substrate or template properties for bacterial deoxyribonucleic acid or ribonucleic acid polymerases. Biochemistry 9(21):4141–4153
Hollenstein M, Hipolito CJ, Lam CH, Perrin DM (2009) A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res 37(5):1638–1649
Hoshika S, Leal NA, Kim M-J, Kim M-S, Karalkar NB, Kim H-J et al (2019) Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363(6429):884–887
Hutter D, Benner SA (2003) Expanding the genetic alphabet: non-epimerizing nucleoside with the pyDDA hydrogen-bonding pattern. J Org Chem 68(25):9839–9842
Hutter D, Kim M-J, Karalkar N, Leal NA, Chen F, Guggenheim E et al (2010) Labeled nucleoside triphosphates with reversibly terminating aminoalkoxyl groups. Nucleosides Nucleotides Nucleic Acids 29(11):879–895
Jakubovska J, Tauraitė D, Birštonas L, Meškys R (2018) N4-acyl-2′-deoxycytidine-5′-triphosphates for the enzymatic synthesis of modified DNA. Nucleic Acids Res 46(12):5911–5923
Kabza AM, Sczepanski JT (2017) An L-RNA aptamer with expanded chemical functionality that inhibits microRNA biogenesis. ChemBioChem 18(18):1824–1827
Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175
Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16(11):1833–1840
Kaul C, Müller M, Wagner M, Schneider S, Carell T (2011) Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. Nat Chem 3(10):794–800
Kawaguchi D, Kodama A, Abe N, Takebuchi K, Hashiya F, Tomoike F et al (2020) Phosphorothioate modification of mRNA accelerates the rate of translation initiation to provide more efficient protein synthesis. Angew Chem Int Ed 59(40):17403–17407
Kim KL, van Galen P, Hovestadt V, Rahme GJ, Andreishcheva EN, Shinde A et al (2021) Systematic detection of m6A-modified transcripts at single-molecule and single-cell resolution. Cell Rep Methods 1(5):100061
Kimoto M, Yamashige R, Matsunaga K-i, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31(5):453–457
Kore AR, Yang B, Srinivasan B (2013) Concise synthesis of 5-methyl-, 5-formyl, and 5-carboxy analogues of 2′-deoxycytidine-5′-triphosphate. Tetrahedron Lett 54(39):5325–5327
Kuwahara M, Hososhima S, Takahata Y, Kitagata R, Shoji A, Hanawa K et al (2003) Simultaneous incorporation of three different modified nucleotides during PCR. Nucleic Acids Res Suppl 3:37–38
Latham JA, Johnson R, Toole JJ (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing -(1 -pentynyl)-2′-deoxyuridine. Nucleic Acids Res 22(14):2817–2822
Lee HH, Kalhor R, Goela N, Bolot J, Church GM (2019) Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun 10(1):2383
Levi-Acobas F, McKenzie LK, Hollenstein M (2022) Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. New J Chem 46(10):4871–4876
Li L, Degardin M, Lavergne T, Malyshev DA, Dhami K, Ordoukhanian P et al (2014) Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J Am Chem Soc 136(3):826–829
Liu H, Yu X, Chen Y, Zhang J, Wu B, Zheng L et al (2017) Crystal structure of an RNA-cleaving DNAzyme. Nat Commun 8(1):2006
Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM et al (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509(7500):385–388
Manandhar M, Chun E, Romesberg FE (2021) Genetic code expansion: inception, development, commercialization. J Am Chem Soc 143(13):4859–4878
Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet J-G et al (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23(7):1719–1722
Mei H, Liao J-Y, Jimenez RM, Wang Y, Bala S, McCloskey C et al (2018) Synthesis and evolution of a threose nucleic acid aptamer bearing 7-deaza-7-substituted guanosine residues. J Am Chem Soc 140(17):5706–5713
Mikhailov SN, Rozenski J, Efimtseva EV, Busson R, Van Aerschot A, Herdewijn P (2002) Chemical incorporation of 1-methyladenosine into oligonucleotides. Nucleic Acids Res 30(5):1124–1131
Milisavljevič N, Perlíková P, Pohl R, Hocek M (2018) Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org Biomol Chem 16(32):5800–5807
Minagawa H, Kataoka Y, Kuwahara M, Horii K, Shiratori I, Waga I (2020) A high affinity modified DNA aptamer containing base-appended bases for human β-defensin. Anal Biochem 594:113627
Morales JC, Kool ET (1998) Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat Struct Biol 5(11):950–954
Nakama T, Takezawa Y, Sasaki D, Shionoya M (2020) Allosteric regulation of DNAzyme activities through intrastrand transformation induced by Cu(II)-mediated artificial base pairing. J Am Chem Soc 142(22):10153–10162
Nakano S-i, Uotani Y, Sato Y, Oka H, Fujii M, Sugimoto N (2013) Conformational changes of the phenyl and naphthyl isocyanate-DNA adducts during DNA replication and by minor groove binding molecules. Nucleic Acids Res 41(18):8581–8590
Nance KD, Gamage ST, Alam MM, Yang A, Levy MJ, Link CN et al (2022) Cytidine acetylation yields a hypoinflammatory synthetic messenger RNA. Cell Chem Biol 29(2):312–320.e317
Nguyen H-K, Asseline U, Dupret D, Nguyen TT (1997) Studies towards the design of a modified GC base pair with stability similar to that of the AT base pair. Tetrahedron Lett 38(23):4083–4086
Palluk S, Arlow DH, de Rond T, Barthel S, Kang JS, Bector R et al (2018) De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol 36(7):645–650
Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N et al (2019) METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell 74(6):1278–1290.e1279
Perrin DM, Garestier T, Hélène C (2001) Bridging the gap between proteins and nucleic acids: a metal-independent RNAseA mimic with two protein-like functionalities. J Am Chem Soc 123(8):1556–1563
Porter KW, Tomasz J, Huang F, Sood A, Shaw BR (1995) N7-cyanoborane-2′-deoxyguanosine 5′-triphosphate is a good substrate for DNA polymerase. Biochemistry 34(37):11963–11969
Ren J, Goss DJ (1996) Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheat germ cap binding proteins. Nucleic Acids Res 24(18):3629–3634
Ren X, Gelinas AD, Linehan M, Iwasaki A, Wang W, Janjic N et al (2021) Evolving a RIG-I antagonist: a modified DNA aptamer mimics viral RNA. J Mol Biol 433(21):167227
Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94(9):4262–4266
Santoro SW, Joyce GF, Sakthivel K, Gramatikova S, Barbas CF (2000) RNA cleavage by a DNA enzyme with extended chemical functionality. J Am Chem Soc 122(11):2433–2439
Sefah K, Yang Z, Bradley KM, Hoshika S, Jiménez E, Zhang L et al (2014) In vitro selection with artificial expanded genetic information systems. Proc Natl Acad Sci USA 111(4):1449–1454
Shanmugasundaram M, Senthilvelan A, Xiao Z, Kore AR (2016) An efficient protection-free one-pot chemical synthesis of modified nucleoside-5′-triphosphates. Nucleosides, Nucleotides & Nucleic Acids 35(7):356–362
Sinclair WR, Arango D, Shrimp JH, Zengeya TT, Thomas JM, Montgomery DC et al (2017) Profiling cytidine acetylation with specific affinity and reactivity. ACS Chem Biol 12(12):2922–2926
Steigenberger B, Schiesser S, Hackner B, Brandmayr C, Laube SK, Steinbacher J et al (2013) Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction. Org Lett 15(2):366–369
Sun Q, Sun J, Gong S-S, Wang C-J, Pu S-Z, Feng F-D (2014) Efficient synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxyl-2′-deoxycytidine and their triphosphates. RSC Adv 4(68):36036–36039
Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J et al (2018) Genomic atlas of the human plasma proteome. Nature 558(7708):73–79
Svitkin YV, Cheng YM, Chakraborty T, Presnyak V, John M, Sonenberg N (2017) N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res 45(10):6023–6036
Switzer C, Sinha S, Kim PH, Heuberger BD (2005) A purine-like Nickel(II) base pair for DNA. Angew Chem Int Ed 44(10):1529–1532
Takezawa Y, Nakama T, Shionoya M (2019) Enzymatic synthesis of Cu(II)-responsive deoxyribozymes through polymerase incorporation of artificial ligand-type nucleotides. J Am Chem Soc 141(49):19342–19350
Tanaka K, Okuda T, Kasahara Y, Obika S (2021) Base-modified aptamers obtained by cell-internalization SELEX facilitate cellular uptake of an antisense oligonucleotide. Mol Ther Nucleic Acids 23:440–449
Tarasow TM, Tarasow SL, Eaton BE (1997) RNA-catalysed carbon–carbon bond formation. Nature 389(6646):54–57
Timofeev EN, Mikhailov SN, Zuev AN, Efimtseva EV, Herdewijn P, Somers RL et al (2007) Oligodeoxynucleotides containing 2′-Deoxy-1-methyladenosine and Dimroth Rearrangement. Helv Chem Acta 90(5):928–937
Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510
Vaníková Z, Hocek M (2014) Polymerase synthesis of photocaged DNA resistant against cleavage by restriction endonucleases. Angew Chem Int Ed 53(26):6734–6737
Wang YJ, Liu EK, Lam CH, Perrin DM (2018) A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem Sci 9(7):1813–1821
Wang Y, Nguyen K, Spitale RC, Chaput JC (2021) A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem 13(4):319–326
Wang H, Wang L, Ma N, Zhu W, Huo B, Zhu A et al (2022) Access to photostability-enhanced unnatural base pairs via local structural modifications. ACS Synth Biol 11(1):334–342
Wolk SK, Mayfield WS, Gelinas AD, Astling D, Guillot J, Brody EN et al (2020) Modified nucleotides may have enhanced early RNA catalysis. Proc Natl Acad Sci USA 117(15):8236–8242
Yang Z, Chen F, Alvarado JB, Benner SA (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133(38):15105–15112
Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim M-J et al (2015) Evolution of functional six-nucleotide DNA. J Am Chem Soc 137(21):6734–6737
Zhou C, Avins JL, Klauser PC, Brandsen BM, Lee Y, Silverman SK (2016) DNA-catalyzed amide hydrolysis. J Am Chem Soc 138(7):2106–2109
Further Readings
Barbieri I, Kouzarides T (2020) Role of RNA modifications in cancer. Nat Rev Cancer 20(6):303–322
Borchardt EK, Martinez NM, Gilbert WV (2020) Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet 54(1):309–336
Chaput JC (2021) Redesigning the genetic polymers of life. Acc Chem Res 54(4):1056–1065
Chaudhary N, Weissman D, Whitehead KA (2021) mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 20(11):817–838
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B et al (2022) Advances in COVID-19 mRNA vaccine development. Sig Transduct Target Ther 7(1):94
Gelinas AD, Davies DR, Janjic N (2016) Embracing proteins: structural themes in aptamer–protein complexes. Curr Opin Struct Biol 36:122–132
Hocek M (2019) Enzymatic synthesis of base-functionalized nucleic acids for sensing, cross-linking, and modulation of protein–DNA binding and transcription. Acc Chem Res 52(6):1730–1737
Hofer A, Liu ZJ, Balasubramanian S (2019) Detection, structure and function of modified DNA bases. J Am Chem Soc 141(16):6420–6429
Hottin A, Marx A (2016) Structural insights into the processing of nucleobase-modified nucleotides by DNA polymerases. Acc Chem Res 49(3):418–427
Houlihan G, Arangundy-Franklin S, Holliger P (2017) Engineering and application of polymerases for synthetic genetics. Curr Opin Biotechnol 48:168–179
Karalkar NB, Benner SA (2018) The challenge of synthetic biology. Synthetic Darwinism and the aperiodic crystal structure. Curr Opin Chem Biol 46:188–195
Kimoto M, Hirao I (2020) Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 49(21):7602–7626
Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479
Kumar S, Chinnusamy V, Mohapatra T (2018) Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front Genet 9:640
Ludwig J (1981) A new route to nucleoside 5′-triphosphates. Acta Biochim Biophys Acad Sci Hung 16(3-4):131–133
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M (2021) Recent progress in non-native nucleic acid modifications. Chem Soc Rev 50(8):5126–5164
Nance KD, Meier JL (2021) Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent Sci 7(5):748–756
Nguyen H-K, Auffray P, Asseline U, Durand M, Maurizot J-C, Thuong NT et al (1998) The stability of duplexes involving AT and/or G4EtC base pairs is not dependent on their AT/G4EtC ratio content. Implication for DNA sequencing by hybridization. Nucleic Acids Res 26(18):4249–4258
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E et al (2018) An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 17(10):751–767
Pfaffeneder T, Spada F, Wagner M, Brandmayr C, Laube SK, Eisen D et al (2014) Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 10(7):574–581
Raiber E-A, Hardisty R, van Delft P, Balasubramanian S (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1(9):0069
Raper AT, Reed AJ, Suo ZC (2018) Kinetic mechanism of DNA polymerases: contributions of conformational dynamics and a third divalent metal ion. Chem Rev 118(12):6000–6025
Rodriguez F, Yushenova IA, DiCorpo D, Arkhipova IR (2022) Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. Nat Commun 13(1):1072
Seo YJ, Hwang GT, Ordoukhanian P, Romesberg FE (2009) Optimization of an unnatural base pair toward natural-like replication. J Am Chem Soc 131(9):3246–3252
Silverman SK (2016) Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci 41(7):595–609
Zhang C, Fu J, Zhou Y (2019) A review in research progress concerning m6A methylation and immunoregulation. Front Immunol 10:922
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2023 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Hollenstein, M. (2023). Enzymatic Synthesis of Base-Modified Nucleic Acids. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_23-1
Download citation
DOI: https://doi.org/10.1007/978-981-16-1313-5_23-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1313-5
Online ISBN: 978-981-16-1313-5
eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics