Abstract
Nuclear beta decay provides a sensitive and rich tool for studying the structure of atomic nuclei as well as assessing the limits of our understanding of the weak interaction. In this chapter the history of the topic is presented. The main quantities associated with beta-decay spectroscopy are defined. Nuclear structure studies are illustrated by some selected examples of the beta decay of exotic nuclei, also aimed at presenting the most up-to-date techniques. The examples include the decay of 52Ni, 100Sn, and 132Sn and a discussion about the islands of inversion. The studies of the structure of the weak interaction and the tests of fundamental symmetries are illustrated through the most precise measurement of spectroscopic quantities and correlation terms, which have the largest impact on searches for new physics beyond the standard electroweak model. These measurements are motivated by the extraction of the strength of the weak interaction, the search for exotic couplings, and tests of parity and time-reversal symmetries.
Similar content being viewed by others
References
H. Abele, The neutron. Its properties and basic interactions. Prog. Part. Nucl. Phys. 60, 1–81 (2008). https://doi.org/10.1016/j.ppnp.2007.05.002
E. Adelberger et al., Positron neutrino correlation in the 0+ —> 0+ decay of Ar-32. Phys. Rev. Lett. 83, 1299–1302 (1999). https://doi.org/10.1103/PhysRevLett.83.1299 [Erratum: Phys. Rev. Lett. 83, 3101 (1999)]
H. Akimune et al., Nucl. Phys. A 569, 245c–254 (1994)
S. Akkoyun et al., Agata—advanced gamma tracking array. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 668, 26–58 (2012). https://doi.org/10.1016/j.nima.2011.11.081, https://www.sciencedirect.com/science/article/pii/S0168900211021516
A. Algora et al., Beta-decay studies for applied and basic nuclear physics. Eur. Phys. J. A 57, 85 (2021)
J.S. Allen et al., Determination of the beta-decay interaction from electron-neutrino angular correlation measurements. Phys. Rev. 116, 134–143 (1959). https://doi.org/10.1103/PhysRev.116.134
R. Anne, A.C. Mueller, Lise 3: a magnetic spectrometer—wien filter combination for secondary radioactive beam production. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 70(1), 276–285 (1992). https://doi.org/10.1016/0168-583X(92)95943-L, https://www.sciencedirect.com/science/article/pii/0168583X9295943L
R. Anne et al., The achromatic spectrometer lise at ganil. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 257(2), 215–232 (1987). https://doi.org/10.1016/0168-9002(87)90741-8, https://www.sciencedirect.com/science/article/pii/0168900287907418
V. Araujo-Escalona et al., Simultaneous measurements of the β-neutrino angular correlation in 32Ar pure Fermi and Gamow-Teller transitions using β-proton coincidences. Phys. Rev. C 101, 055501 (2020). https://doi.org/10.1103/PhysRevC.101.055501
R.K. Bardin et al., ft value of 14O and the Universal Fermi Interaction. Phys. Rev. Lett. 5, 323–326 (1960). https://doi.org/10.1103/PhysRevLett.5.323
H. Becquerel, Sur les radiations émises par phosphorescence. Comptes. Rendus. 122, 420 (1896a)
H. Becquerel, Sur les radiations invisibles émises par les corps phosphorescents. Comptes. Rendus. 122, 501 (1896b)
H. Becquerel, Déviation du rayonnement du radium dans un champ électrique. Comptes. Rendus. 130, 809 (1900)
T. Bhattacharya et al., Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC. Phys. Rev. D 85, 054512 (2012). https://doi.org/10.1103/PhysRevD.85.054512
N. Birge, Measurement of the Fierz Interference Term for Calcium-45 (2019). https://trace.tennessee.edu/utk_graddiss/5941
S. Borg et al., On-line separation of isotopes at a reactor in studsvik osiris. Nucl. Instrum. Methods 91(1), 109–116 (1971). https://doi.org/10.1016/0029-554X(71)90646-X, https://www.sciencedirect.com/science/article/pii/0029554X7190646X
P.J. Brussaard, P.W.M. Glaudemans, Shell Model Applications in Nuclear Spectroscopy (North Holland Publishing Company, Amsterdam, 1977)
M.T. Burkey et al., Improved limit on tensor currents in the weak interaction from 8Li β decay. Phys. Rev. Lett. 128, 202502 (2022). https://doi.org/10.1103/PhysRevLett.128.202502
W. Byron, Helium6 CRES Collaboration An overview of the 6He CRES experiment in APS Division of Nuclear Physics Meeting Abstracts. APS Meeting Abstracts, vol. 2020 (2020), p. MF.002
N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963). https://doi.org/10.1103/PhysRevLett.10.531
F.P. Calaprice, The use of atomic beam and optical methods in the study of fundamental symmetries. Hyperfine Interact. 22(1), 83–93 (1985). https://doi.org/10.1007/BF02063981
A.S. Carnoy et al., Limits on nonstandard weak currents from the polarization of 14O and 10C decay positrons. Phys. Rev. C 43, 2825–2834 (1991). https://doi.org/10.1103/PhysRevC.43.2825
R. Catherall et al., The ISOLDE facility. J. Phys. G: Nucl. Part. Phys. 44(9), 094002 (2017). https://doi.org/10.1088/1361-6471/aa7eba
I. Čeliković et al., New isotopes and proton emitters–crossing the drip line in the vicinity of 100Sn. Phys. Rev. Lett. 116, 162501 (2016). https://doi.org/10.1103/PhysRevLett.116.162501
J. Chadwick, Verh. Dtsch. Phys. Ges. 16, 383 (1914)
J. Chadwick, Proc. R. Soc. 136, 692 (1932)
J.H. Christenson et al., Evidence for the 2π decay of the \(k_{2}^{0}\) meson. Phys. Rev. Lett. 13, 138–140 (1964). https://doi.org/10.1103/PhysRevLett.13.138
V. Cirigliano et al., Beta decays and non-standard interactions in the LHC Era. Prog. Part. Nucl. Phys. 71, 93–118 (2013). https://doi.org/10.1016/j.ppnp.2013.03.005, 1303.6953
P. Delahaye et al., The mora project. Hyperfine Interact. 240(1), 63 (2019). https://doi.org/10.1007/s10751-019-1611-x
C. Detraz et al., Beta decay of na-27-32 and their descendants. Phys. Rev. C 19, 164–176 (1979). https://doi.org/10.1103/PhysRevC.19.164
L. Dick et al., A novel efficient method for measuring the polarisation of positrons. Phys. Lett. 3(7), 326–329 (1963). https://doi.org/10.1016/0031-9163(63)90176-8, https://www.sciencedirect.com/science/article/pii/0031916363901768
J. Dilling et al., Penning-trap mass measurements in atomic and nuclear physics. Annu. Rev. Nucl. Part. Sci. 68(1), 45–74 (2018). https://doi.org/10.1146/annurev-nucl-102711-094939
C.A. Douma et al., Eur. Phys. J. A 56, 51 (2020). https://doi.org/10.1140/epja/s10050-020-00044-9
D. Dubbers, M.G. Schmidt, The neutron and its role in cosmology and particle physics. Rev. Mod. Phys. 83, 1111–1171 (2011). https://doi.org/10.1103/RevModPhys.83.1111
ENSDF (2022). https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html
A. Falkowski et al., Comprehensive analysis of beta decays within and beyond the Standard Model. J. High. Energ. Phys. 2021, 126 (2021). https://doi.org/10.1007/JHEP04(2021)126
B. Fenker et al., Precision measurement of the β asymmetry in spin-polarized 37K decay. Phys. Rev. Lett. 120, 062502 (2018). https://doi.org/10.1103/PhysRevLett.120.062502
E. Fermi, Versuch einer theorie der beta-strahlen. Z. Phys. 88, 161 (1934). English translation: Am. J. Phys. 12, 1150 (1968)
R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193 (1958). https://doi.org/10.1103/PhysRev.109.193
M. Fierz, Zur fermischen theorie des β-zerfalls. Z. Phys. 104(7), 553–565 (1937). https://doi.org/10.1007/BF01330070
X. Fléchard et al., Measurement of the βν correlation coefficient aβν in the β decay of trapped 6He ions. J. Phys. G: Nucl. Part. Phys. 38(5), 055101 (2011). https://doi.org/10.1088/0954-3899/38/5/055101
L.M. Fraile, Fast-timing spectroscopy at ISOLDE. J. Phys. G: Nucl. Part. Phys. 44(9), 094004 (2017). https://doi.org/10.1088/1361-6471/aa8217
J. Freeman et al., The ft value for 26Al nuclei and the universal Fermi interaction. Phys. Lett. 3(3), 136–138 (1962). https://doi.org/10.1016/0031-9163(62)90062-8, https://www.sciencedirect.com/science/article/pii/0031916362900628
J. Freeman et al., The ft values for 34Cl nuclei and 54Co and the magnitude of the polar vector coupling constant. Phys. Lett. 8(2), 115–119 (1964). https://doi.org/10.1016/0031-9163(64)90733-4, https://www.sciencedirect.com/science/article/pii/0031916364907334
FRIB (2022). https://userportal.frib.msu.edu/Pac/Experiments/PublicList
Y. Fujita et al., Gamow-Teller transitions- a mirror reflecting nuclear structure. Act. Phys. Pol. B 43, 153 (2012). https://doi.org/10.5506/APhysPolB.43.153
M. Fujiwara et al., Magnetic spectrometer grand raiden. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 422(1–3), 484–488 (1999). https://doi.org/10.1016/S0168-9002(98)01009-2
H. Geissel et al., The gsi projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 70(1), 286–297 (1992). https://doi.org/10.1016/0168-583X(92)95944-M
T. Glasmacher et al., Facility for rare isotope beams update for nuclear physics news. Nucl. Phys. News 27(2), 28–33 (2017). https://doi.org/10.1080/10619127.2017.1317176
M. Gonzalez-Alonso, O. Naviliat-Cuncic, Kinematic sensitivity to the Fierz term of β-decay differential spectra. Phys. Rev. C 94(3), 035503 (2016). https://doi.org/10.1103/PhysRevC.94.035503, 1607.08347
M. Gonzalez-Alonso et al., New physics searches in nuclear and neutron β decay. Prog. Part. Nucl. Phys. 104, 165 (2019). https://doi.org/10.1016/j.ppnp.2018.08.002
A. Gorelov et al., Scalar interaction limits from the β −−ν correlation of trapped radioactive atoms. Phys. Rev. Lett. 94, 142501 (2005). https://doi.org/10.1103/PhysRevLett.94.142501
A.E. Greendale, D.L. Love, A rapid radiochemical procedure for tin. Anal. Chem. 35(11), 1712–1715 (1963). https://doi.org/10.1021/ac60204a051
V. Guadilla et al., Characterization and performance of the dtas detector. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 910, 79–89 (2018). https://doi.org/10.1016/j.nima.2018.09.001, https://www.sciencedirect.com/science/article/pii/S0168900218310799
P. Gysbers et al., Discrepancy between experimental and theoretical beta-decay rates from first principles. Nat. Phys. 15, 428–431 (2019a). https://doi.org/10.1038/s41567-019-0450-7
P. Gysbers et al., Discrepancy Between Experimental and Theoretical Beta-Decay Rates Resolved from First Principles (2019b). https://doi.org/10.48550/arXiv.1903.00047
O. Hall et al., β-delayed neutron emission of r-process nuclei at the N = 82 shell closure. Phys. Lett. B 816, 136266 (2021). https://doi.org/10.1016/j.physletb.2021.136266, https://www.sciencedirect.com/science/article/pii/S0370269321002069
J. Hardy et al., The essential decay of pandemonium: a demonstration of errors in complex beta-decay schemes. Phys. Lett. B 71(2), 307–310 (1977). https://doi.org/10.1016/0370-2693(77)90223-4, https://www.sciencedirect.com/science/article/pii/0370269377902234
J.C. Hardy, I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity. Phys. Rev. C 102, 045501 (2020). https://doi.org/10.1103/PhysRevC.102.045501, https://link.aps.org/doi/10.1103/PhysRevC.102.045501
L. Hayen, Standard model \(\mathscr {O}({\alpha })\) renormalization of gA and its impact on new physics searches. Phys. Rev. D 103, 113001 (2021). https://doi.org/10.1103/PhysRevD.103.113001
C.B. Hinke et al., Nature 486, 341 (2012). https://doi.org/10.1038/nature11116
A. Höcker, Z. Ligeti, Cp violation and the CKM matrix. Annu. Rev. Nucl. Part. Sci. 56(1), 501–567 (2006). https://doi.org/10.1146/annurev.nucl.56.080805.140456
B.R. Holstein, Recoil effects in allowed beta decay: the elementary particle approach. Rev. Mod. Phys. 46, 789–814 (1974). https://doi.org/10.1103/RevModPhys.46.789
R. Huber et al., Search for time-reversal violation in the β decay of polarized 8Li nuclei. Phys. Rev. Lett. 90, 202301 (2003). https://doi.org/10.1103/PhysRevLett.90.202301
M. Hughes et al., Measurement of the 20F half-life. Phys. Rev. C 97, 054328 (2018). https://doi.org/10.1103/PhysRevC.97.054328
X. Huyan et al., Toward a measurement of weak magnetism in6He decay. Hyperfine Interact. 237(1), 93 (2016). https://doi.org/10.1007/s10751-016-1303-8
J.D. Jackson et al., Coulomb corrections in allowed beta transitions. Nucl. Phys. 4, 206–212 (1957a). https://doi.org/10.1016/0029-5582(87)90019-8
J.D. Jackson et al., Possible tests of time reversal invariance in Beta decay. Phys. Rev. 106, 517–521 (1957b). https://doi.org/10.1103/PhysRev.106.517
C.H. Johnson et al., Precision measurement of the recoil energy spectrum from the decay of he6. Phys. Rev. 132, 1149–1165 (1963). https://doi.org/10.1103/PhysRev.132.1149
W. Kaufmann, Phys. Z 2, 602 (1901)
O. Kofoed-Hansen, K.O. Nielsen, Short-lived krypton isotopes and their daughter substances. Phys. Rev. 82, 96–97 (1951). https://doi.org/10.1103/PhysRev.82.96.2
F. Koks, J. Van Klinken, Investigation on β-polarization at low velocities with β-particles from the decay of tritium. Nucl. Phys. A 272(1), 61–81 (1976). https://doi.org/10.1016/0375-9474(76)90318-3, https://www.sciencedirect.com/science/article/pii/0375947476903183
K.S. Krane, Introductory Nuclear Physics (Wiley, New-York, 1988)
T. Kubo et al., BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory. Prog. Theor. Exp. Phys. 2012(1), (2012). https://doi.org/10.1093/ptep/pts064
R. Laxdal et al., Progress in the conceptual design of the isac-ii linac at triumf, in PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268), vol. 5 (2001), pp. 3939–3941. https://doi.org/10.1109/PAC.2001.988304
I. Lee et al., Gretina: a gamma ray energy tracking array. Nucl. Phys. A 746, 255–259 (2004).https://doi.org/10.1016/j.nuclphysa.2004.09.038, https://www.sciencedirect.com/science/article/pii/S0375947404009637. Proceedings of the Sixth International Conference on Radioactive Nuclear Beams (RNB6)
T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254 (1956). https://doi.org/10.1103/PhysRev.104.254
M. Lewitowicz et al., Identification of the doubly-magic nucleus 100Sn in the reaction 112Sn+ natNi at 63 MeV/nucleon. Phys. Lett. B 332(1–2), 20–24 (1994). https://doi.org/10.1016/0370-2693(94)90852-4
K. Lojek et al., Ultra-thin gas detector for tracking of low energy electrons. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 611(2), 284–288 (2009). https://doi.org/10.1016/j.nima.2009.07.075, https://www.sciencedirect.com/science/article/pii/S0168900209015459. Particle Physics with Slow Neutrons
D. Lubos et al., Improved value for the Gamow-Teller strength of the 100Sn beta decay. Phys. Rev. Lett. 122, 222502 (2019). https://doi.org/10.1103/PhysRevLett.122.222502
W.G. Lynch, Nuclear fragmentation in proton- and heavy-ion-induced reactions. Annu. Rev. Nucl. Part. Sci. 37(1), 493–535 (1987). https://doi.org/10.1146/annurev.ns.37.120187.002425
H. Mach et al., A method for picosecond lifetime measurements for neutron-rich nuclei: (1) outline of the method. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 280(1), 49–72 (1989). https://doi.org/10.1016/0168-9002(89)91272-2, https://www.sciencedirect.com/science/article/pii/0168900289912722
H. Mach et al., Structure of the p-h nucleus 132Sb. Phys. Rev. C 51, 500–508 (1995). https://doi.org/10.1103/PhysRevC.51.500
I. Moore et al., Towards commissioning the new Igisol-4 facility. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 317, 208–213 (2013). https://doi.org/10.1016/j.nimb.2013.06.036, https://www.sciencedirect.com/science/article/pii/S0168583X13007143, XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, 2–7 Dec 2012 at Matsue
T. Motobayashi et al., Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy coulomb excitation. Phys. Lett. B 346(1), 9–14 (1995). https://doi.org/10.1016/0370-2693(95)00012-A, https://www.sciencedirect.com/science/article/pii/037026939500012A
M. Mougeot et al., Mass measurements of 99–101 in challenge ab initio nuclear theory of the nuclide 100Sn. Nat. Phys. 17(10), 1099–1103 (2021). https://doi.org/10.1038/s41567-021-01326-9
O. Naviliat-Cuncic, Searches for exotic interactions in nuclear beta decay. AIP Conf. Proc. 1753, 060001 (2016). https://doi.org/10.1063/1.4955362
O. Naviliat-Cuncic, M. González-Alonso, Prospects for precision measurements in nuclear decay in the lhc era. Annalen. der. Physik. 525(8–9), 600–619 (2013). https://doi.org/10.1002/andp.201300072
O. Naviliat-Cuncic, N. Severijns, Test of the conserved vector current hypothesis in T = 1/2 mirror transitions and new determination of Vud. Phys. Rev. Lett. 102, 142302 (2009). https://doi.org/10.1103/PhysRevLett.102.142302
NNDC (2022). https://www.nndc.bnl.gov/logft/
S.E. Orrigo et al., Beta decay of the exotic tz = −2, 56Zn nucleus and half-life of various proton-rich tz = −1 nuclei. Act. Phys. Pol. B 45(2), 355–362 (2014). https://doi.org/10.5506/APhysPolB.45.355
S.E.A. Orrigo et al., β decay of the exotic Tz = −2 nuclei 48Fe,52Ni, and 56Zn. Phys. Rev. C 93, 044336 (2016). https://doi.org/10.1103/PhysRevC.93.044336
T. Otsuka et al., Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020). https://doi.org/10.1103/RevModPhys.92.015002
T. Otsuka et al., Moments and radii of exotic Na and Mg isotopes. Phys. Rev. C 105, 014319 (2022). https://doi.org/10.1103/PhysRevC.105.014319
H. Paul, Least-squares adjustment of the coupling constants in beta-decay. Nucl. Phys. A 154(1), 160–176 (1970). https://doi.org/10.1016/0375-9474(70)91077-8, https://www.sciencedirect.com/science/article/pii/0375947470910778
W. Pauli, (1930) https://www.symmetrymagazine.org/article/march-2007/neutrino-invention (letter to a group in Tübingen)
S. Pietri et al., Recent results in fragmentation isomer spectroscopy with rising. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 261(1), 1079–1083 (2007). https://doi.org/10.1016/j.nimb.2007.04.219, https://www.sciencedirect.com/science/article/pii/S0168583X07010294. The Application of Accelerators in Research and Industry
A. Poves, Shell model spectroscopy far from stability. J. Phys. G: Nucl. Part. Phys. 44(8), 084002 (2017). https://doi.org/10.1088/1361-6471/aa7789
A. Poves, J. Retamosa, The onset of deformation at the n = 20 neutron shell closure far from stability. Phys. Lett. B 184(4), 311–315 (1987). https://doi.org/10.1016/0370-2693(87)90171-7, https://www.sciencedirect.com/science/article/pii/0370269387901717
F. Reines, C. Cowan, Detection of the free neutrino. Phys. Rev. 92, 830 (1953). https://doi.org/10.1103/PhysRev.92.830
F. Reines, C. Cowan, Free antineutrino absorption cross section. I. measurement of the free antineutrino absorption cross section by protons. Phys. Rev. 113, 273 (1959). https://doi.org/10.1103/PhysRev.113.273
B. Rubio, W. Gelletly, Beta Decay of Exotic Nuclei (Springer, Berlin/Heidelberg, 2009). https://doi.org/10.1007/978-3-540-85839-3
B. Rubio et al., Beta decay studies with total absorption spectroscopy and the lucrecia spectrometer at ISOLDE. J. Phys. G: Nucl. Part. Phys. 44(8), 084004 (2017). https://doi.org/10.1088/1361-6471/aa797f
E. Rutherford, Philos. Mag. 47, 109 (1899)
R. Schneider et al., Production and identification of 100Sn. Zeitschrift fur Physik A 348, 341–342 (1994). https://doi.org/10.1007/BF01305875
G. Senjanovic, R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D 12, 1502–1505 (1975). https://doi.org/10.1103/PhysRevD.12.1502
N. Severijns et al., Limits on right-handed charged weak currents from a polarization-asymmetry correlation experiment with 107In. Phys. Rev. Lett. 70, 4047–4050 (1993). https://doi.org/10.1103/PhysRevLett.70.4047
N. Severijns et al., Tests of the standard electroweak model in nuclear beta decay. Rev. Mod. Phys. 78, 991–1040 (2006). https://doi.org/10.1103/RevModPhys.78.991
J. Simpson et al., The exogam array: a radioactive beam gamma-ray spectrometer. Acta Physiol. Hung. Ser. A: Heavy Ion Phys. 11(1–2), 159–188 (2000)
B. Singh et al., Review of logft values in β decay. Nucl. Data Sheets 84(3), 487–563 (1998). https://doi.org/10.1006/ndsh.1998.0015, https://www.sciencedirect.com/science/article/pii/S0090375298900151
P. Spiller, G. Franchetti, The FAIR accelerator project at GSI. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 561(2), 305–309 (2006). https://doi.org/10.1016/j.nima.2006.01.043, https://www.sciencedirect.com/science/article/pii/S0168900206000507. Proceedings of the Workshop on High Intensity Beam Dynamics
E.C.G. Sudarshan, R.E. Marshak, Chirality invariance and the universal Fermi interaction. Phys. Rev. 109, 1860 (1958). https://doi.org/10.1103/PhysRev.109.1860.2
E. Thomas et al., Positron polarization in the decay of polarized 12N, a precision test of the standard model. Nucl. Phys. A 694(3), 559–589 (2001). https://doi.org/10.1016/S0375-9474(01)01083-1, https://www.sciencedirect.com/science/article/pii/S0375947401010831
I. Towner, A mass dependence in hindrance factors for favoured Gamow-Teller transitions. Nucl. Phys. A 444(3), 402–418 (1985). https://doi.org/10.1016/0375-9474(85)90459-2, https://www.sciencedirect.com/science/article/pii/0375947485904592
S. Van Gorp et al., First β − ν correlation measurement from the recoil-energy spectrum of Penning trapped 35Ar ions. Phys. Rev. C 90, 025502 (2014). https://doi.org/10.1103/PhysRevC.90.025502
P. Villard, Compt. Rendus. 130, 1010 (1900a)
P. Villard, Compt. Rendus. 130, 1178 (1900b)
A.C.C. Villari, The Accelerated ISOL technique and the SPIRAL project. Nucl. Phys. A 693, 465–476 (2001). https://doi.org/10.1016/S0375-9474(01)01107-1
K.K. Vos et al., Symmetry violations in nuclear and neutron β decay. Rev. Mod. Phys. 87, 1483–1516 (2015). https://doi.org/10.1103/RevModPhys.87.1483
M. Wang et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41(3), 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003
E.K. Warburton et al., Phys. Rev. C 41, 1147–1166 (1990). https://doi.org/10.1103/PhysRevC.41.1147
V.A. Wichers et al., Bounds on right-handed currents from nuclear beta decay. Phys. Rev. Lett. 58, 1821–1824 (1987). https://doi.org/10.1103/PhysRevLett.58.1821
C.S. Wu et al., Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957). https://doi.org/10.1103/PhysRev.105.1413
X. Zhang, Z. Ren, New exponential law of β+-decay half-lives of nuclei far from β-stable line. Phys. Rev. C 73, 014305 (2006) https://doi.org/10.1103/PhysRevC.73.014305
Acknowledgements
This publication is supported in part by the R&D grant PID2019-104714GB-C21, funded by the Spanish Ministry of Science MCIN/AEI/10.13039/501100011033; the Programa excelencia Generalitat Valenciana PROMETEO/2019/007; the French Agence Nationale de la Recherche under grant ANR-20-CE31-0007-01; and the US National Science Foundation under grant PHY-21-11185. WG acknowledges the support of STFC (UK) council grant ST/P005314/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2022 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Rubio, B., Gelletly, W., Naviliat-Cuncic, O. (2022). Beta Decay: Probe for Nuclear Structure and the Weak Interaction. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-15-8818-1_43-1
Download citation
DOI: https://doi.org/10.1007/978-981-15-8818-1_43-1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-8818-1
Online ISBN: 978-981-15-8818-1
eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics